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SUMMARY

This report details the development and interim results of the design, construction, and population of a
bibliographic database that catalogs work performed regarding the disposal of nuclear waste in geologic
salt. The database contains reference information and abstracts to over 10,000 technical reports, and PDF
copies of most reports.

After the construction and population of the database, reports were reviewed and ranked by their
applicability to the current and future research into heat-generating radioactive waste disposal in salt. The
main portion of the report text is a historical summary of regulations, repository siting in salt, and salt
scientific programs in the US and Germany. Section 6 summarizes historical research performed by test
type. Appendices detail the development of SITED, the data sources used to populate SITED, and the
procedure used to review reports.
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REVIEW AND EVALUATION OF SALT R&D DATA FOR
DISPOSAL OF NUCLEAR WASTE IN SALT

1 Introduction

The Salt Research and Development Investigation (SRDI) is a study funded in May 2012 by the US
Department of Energy (DOE) office of Nuclear Energy, related to salt disposal of heat-generating waste.
The SRDI project is being performed collaboratively by Sandia National Laboratories (SNL) and Los
Alamos National Laboratory (LANL), including both Carlsbad, NM and primary (Albuquerque, NM &
Los Alamos, NM) offices. There are six primary activities involved in the SRDI project:

Existing Salt Data Compilation and Assessment,

Test Planning for Re-Entry into the North Experimental Area of WIPP,

Laboratory Studies,

Modeling Studies Related to Salt,

International Collaboration, and

Salt Instrumentation Development and Test Methodologies.

ocouprwdE

This report details the development and interim results of SRDI Activity 1, directed primarily by the SNL
Carlsbad Programs Group, with support provided by the LANL Carlsbad Office. The SRDI is executing a
plan to understand the history and prepare for a future where salt is a disposal medium for heat-generating
radioactive waste. SRDI activity 1 involved the design, construction, and population of a bibliographic
database for cataloging work that has already been done on the subject. The database is built on a MySQL
database using an open-source PHP distribution called Refbase. The database contains reference
information and abstracts to over 10,000 technical reports, and PDF copies of most reports. After
additional work in fiscal year 2013, the database will also contain electronic versions of data from
laboratory and in situ salt experiments relevant to SRDI.

The relevant material included in SITED covers various aspects of research into geologic salt as a host
medium for disposal of heat-generating radioactive waste. The research includes laboratory tests, in situ
tests, and modeling of the relevant physical processes in salt, including: thermal, geomechanical,
hydrological, geological, metallurgical, and geochemical behaviors. Each of these processes is also
potentially coupled with other processes, producing combination behaviors (e.g., thermomechanics or
poroelasticity).

References are listed at the end of each section in an abbreviated format. When a report has an identifying
number (e.g., SAND, ORNL, or OSTI number), then other reference information is not listed in the
citation (e.g., conference or journal information). Reports can be found with full bibliographic
information in SITED, searching on the identifying report number. All citations given in this report can be
downloaded in PDF form from SITED.

The database has been designed, constructed, and populated with references and electronic documents
from various DOE-sponsored library sources. The review of the US- and German-based salt research
literature in the database is mostly complete. In fiscal year 2013 we will finish the task related to the
discovery, acquisition, and reading of electronic data for the tests described in this report.

2 Bibliographic Database Developed for Activity 1

Activity 1 included the design, selection, implementation, and population of an online bibliographic
database. This database was initially populated from several DOE sources, and was supplemented during
the review process from several external sources. Electronic (PDF) copies of reports are attached to
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entries whenever available. The records in the database were reviewed and ranked by their potential
relevance to the current SRDI project.

The Salt Investigations Technical Expansive Database (SITED) collectively refers to the database
software, the web-based interface, and the server used to deliver both the web pages and attached files.
The open-source web reference database (Refbase — www. refbase. net) was chosen because it has a
simple, intuitive, and powerful interface and best satisfies the design criteria, given the project time and
budget constraints.

The database design had several key requirements that led to the selection of the Refbase database
software. The requirements for the database and its interface included the ability to:

e access the interface from outside SNL via the public internet;

o allow creation or editing of database records by authorized personnel;

¢ allow searching/querying existing records by authorized personnel (potentially a different group

than those allowed write access);

o allow bulk record import from primary sources;

o allow attachment of multiple files (e.g., PDF, ASCII text, or data) to each record; and

o limit read/write access to authorized personnel.

Several commercial and free open-source alternatives were considered. Refbase was chosen because it
fulfilled the above requirements and was freely available as PHP source code for customization to our
specific needs when necessary. The database is hosted and the web interface is served from an SNL
webserver (https://sited.sandia.gov/sited), which is accessible both inside the SNL intranet,
and from any computer with a modern web browser and internet access.

The appendices detail the implementation of SITED (see Appendix B), the data sources used to populate
the database (see Appendix C), and the procedure used to review reports (see Appendix D). The next two
sections introduce the detailed project descriptions through narrative descriptions of the regulations and
siting process history in the US.

3 US Regulatory History for Salt Radioactive Waste Repositories

The Manhattan Engineering District formed in 1941 to develop a nuclear weapon. Actions relating to this
and other weapon activities and subsequent nuclear energy research created radioactive materials, some of
which were considered unwanted waste. Since only small amounts of waste materials were generated
during the early years, not much emphasis was given to practical or consistent disposal methods. Waste
products were disposed in trenches, boreholes, pits and canyons. The Atomic Energy Act of 1946 made
the government responsible for control and ownership of all radioactive materials, therefore it became the
government’s responsibility to control disposal of waste materials (US Congress, 1946). The Atomic
Energy Act of 1954 later superseded the 1946 act (US Congress, 1954).

In 1955, the government was looking into other disposal methods besides shallow land disposal, when the
National Academy of Sciences (NAS) was tasked with analyzing radioactive waste disposal methods.
Most waste was liquid, generated from defense programs with some nuclear energy reactor research
wastes. It was believed uranium ore was quite limited in availability, which led the government to require
all commercial spent fuel to be reprocessed, leading to more liquid waste similar to defense-generated
waste. The 1957 NAS report recommended disposal of this liquid waste in salt formations (NAS, 1957).
This was reaffirmed in subsequent NAS reports (NAS, 1961 & 1970). Radioactive waste disposal did not
get much attention until 1966 when the NAS published a report critical of the government’s lack of
progress in radioactive waste disposal (NAS, 1966). At that time, the Atomic Energy Commission (AEC)
and Oak Ridge National Laboratory (ORNL) were investigating disposal concepts in Kansas that
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culminated in Project Salt Vault. This project analyzed the behavior of salt and its potential use as a
disposal medium (mostly radiation and heat effects). In situ experiments were performed at an abandoned
salt mine in Lyons, Kansas between 1963 and 1967, including demonstration of radioactive waste
disposal (Bradshaw & McClain, 1971).

However, due to political concerns over the Lyons, Kansas site being used as a “pilot project” and
uncertainty with site characterization information related to oil and gas boreholes and solution mining, the
site was abandoned in 1972. AEC, ORNL, and the US Geological Survey (USGS) turned their attention
to other salt formations as potential locations for further study. In part due to local support to use existing
potash mines for radioactive waste disposal, the Delaware Basin was chosen in 1973 for further study. In
1974, two exploratory boreholes were drilled to investigate a site east of Carlsbad.

In 1970 the AEC decided to stop certain waste disposal actions and limit waste types that could continue
to be disposed. It was decided to retrievably store waste containing more than 10 nCi/g (nanocuries per
gram) of 25U, its daughter products, Pu, and transplutonium radionuclides, until a more suitable disposal
option was available (Zerwekh, 1979). Transplutonium radioactive waste is now referred to as transuranic
or simply TRU.

In 1975, AEC was split into the Nuclear Regulatory Commission (NRC) and the Energy Research and
Development Agency (ERDA) (US Congress 1974a) to separate the regulatory and research branches of
the AEC. In 1977 the Department of Energy Act consolidated ERDA with the Federal Energy
Administration to create the cabinet-level DOE.

In the 1960’s and early 1970’s the AEC was responsible for self-regulated management and disposal of
radioactive waste. The National Environmental Policy Act (NEPA) of 1969 mandated Environmental
Impact Statements (EIS), which also applied to federal disposal facilities (US Congress, 1969). It was not
until 1975 that the Environmental Protection Agency (EPA) was tasked to write a generic radioactive
waste disposal standard that would be applicable to the government’s disposal of spent fuel, high-level
waste (HLW), and TRU waste. This standard was not promulgated until 1985 (EPA, 1985).

In 1976 ERDA changed and enlarged its program for management and disposal of HLWs. The National
Waste Terminal Storage program was created and run by ORNL, through their Office of Waste Isolation
(OWI) (Lomenick, §5.1.3). In 1978, the National Waste Terminal Storage program shifted to the Office
of Nuclear Waste Isolation (ONWI), managed by Battelle Memorial Institute, in Columbus, OH.

In 1980, President Carter declared that the safe disposal of radioactive waste generated by defense and
commercial activities was a national responsibility. The subsequent EIS specified that DOE would pursue
the mined geologic disposal alternative.

In 1980 Congress authorized the Waste Isolation Pilot Plant (WIPP) as a research and development site to
demonstrate the safe disposal of radioactive waste generated from US defense activities, exempted from
regulation by the NRC (US Congress, 1979). At that time, waste classifications or categories were not
well developed. The Atomic Energy Act of 1954 classified radioactive materials as source, special
nuclear, or by-product materials (US Congress, 1954). The by-product material was categorized as
defense or commercial with respect to its origin and as either high-, intermediate-, or low-level waste with
respect to its radioactive characteristics. The government originally intended to dispose of all of these
wastes at a “pilot” disposal site, however the 1980 Congressional Act limited the WIPP disposal site to
only defense-generated waste (US Congress, 1979). Another part of the 1980 Congressional Act required
the government to enter into an agreement with the State of New Mexico to allow for better
communication between the parties and to include the state in certain site actions. The first Consultation
and Cooperation Agreement was established in 1981 (State of New Mexico, 1981).
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DOE published the final WIPP EIS in 1980 (DOE, 1980) and the record of decision was issued in 1981
(DOE, 1981). Construction of the first WIPP shaft was started shortly thereafter.

The Nuclear Waste Policy Act of 1982 (NWPA) was promulgated to develop a disposal facility for HLW
and spent fuel (US Congress, 1982). This standard set the responsibilities of the NRC and the EPA for a
high-level disposal facility and exempted facilities that were solely used to dispose of defense wastes. The
NWPA required analysis and siting activities for disposal in different types of geologic materials. In
1982, DOE chose nine potential HLW disposal sites, seven of which were in salt. By 1986, the list of
potentially acceptable repository sites narrowed to three: Deaf Smith County, Texas (bedded salt);
Hanford, Washington (basalt); and Yucca Mountain, Nevada (welded tuff). Congress amended the
NWPA in 1987, directing DOE to characterize only Yucca Mountain as a potential location, and created
the Nuclear Waste Technical Review Board (US Congress, 1987). Another important element of the
NWPA was the definitions of high-level, low-level and spent nuclear fuel.

Another important Act to radioactive waste disposal was the Low-Level Waste Policy Amendments Act
of 1985 (US Congress, 1985), which defined the responsibilities of the government, the states, the
regulator, and disposer, and defined (through reference to NRC regulation) low-level waste. The NWPA
and the Low-Level Waste Policy Amendments Act helped define radioactive waste classifications,
identified parties responsible for their disposal, and the organizations responsible for regulating their
disposal.

The most important WIPP-relevant regulations were the Land Withdrawal Act (LWA; US Congress,
1996) in 1992 and the first promulgation of the EPA’s radioactive waste disposal standard (EPA, 1985).
The Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel,
High-Level, and Transuranic Radioactive Wastes was published in 1985 and later remanded due to a
lawsuit. The LWA reinstated the disposal standard with the exception of the parts applicable to the
lawsuit and required EPA to re-promulgate the remanded sections and to develop specific criteria to
demonstrate compliance with the disposal standard applicable to WIPP (EPA, 1996). The main intent of
the LWA was to withdraw land for the WIPP, task EPA as the regulator, and list tasks the DOE would
need to complete before the WIPP could start disposal operations. The LWA limited the WIPP to dispose
of only defense TRU waste, set other repository waste limits, and further defined TRU waste. The earlier
AEC’s definition for TRU waste had radionuclide concentrations greater than 10 nCi/g while the LWA
set the limit to greater than 100 nCi/g of alpha-emitting transuranic isotopes, with half-lives greater than
20 years. The LWA also defined contact and remote handled waste types based on the outer waste
container’s dose rate. Specific curie limits were placed on Remote Handled (RH) waste and the total
quantity of transuranic waste that could be emplaced at WIPP was defined as 6.2 million ft® (the
Consultation and Cooperation Agreement had previously set the RH limit to 250,000 ft°). The EPA
disposal standard outlined the necessary level of protection a disposal system would need to protect the
environment, the public, and workers (EPA, 1993). The standard included containment requirements,
assurance requirements, and individual protection requirements for a disposal system.

In addition to the radioactive waste regulations, hazardous waste regulations applicable to WIPP waste.
The 1976 Resource Conservation and Recovery Act (RCRA) is a Federal regulation applicable to
management and disposal of solid waste including hazardous materials (US Congress, 1976; 40 CFR 260-
270). The EPA was given authority to implement RCRA and individual states may be granted authority to
regulate their state’s management and disposal programs. The State of New Mexico has this authority.
Hazardous waste is defined by its characteristics, which include ignitability, corrosivity, reactivity, or
toxicity. Originally, the DOE argued that the EPA did not have jurisdiction to regulate DOE “byproduct”
waste, however after further deliberations conceded that “mixed” defense waste disposal falls under
RCRA. Mixed waste has both radioactive and hazardous materials. The WIPP demonstrated compliance
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with the State of New Mexico’s hazardous waste disposal requirements through a permit application that
was submitted in 1995 and approved by the New Mexico Environment Department in 1999. With respect
to mixed waste, the LWA stated the WIPP waste was exempt from land disposal treatment standards of
the Solid Waste Disposal Act (SWDA; US Congress, 1965).

One important element of the LWA required the DOE to comply with other environmental laws and
regulations. These laws and regulations included the Clean Air Act and Amendments (US Congress,
1990), the Safe Drinking Water Act, (with exemption) title X1V of the Public Health Services Act (U.S
Congress, 1974b), the Comprehensive Environmental Response, Compensation, and Liability Act of 1980
(US Congress, 1980), and other applicable Federal laws pertaining to public health and safety or the
environment. The DOE was also required to biennially submit documentation of continued compliance
with the laws, regulations, and permit requirements described above to the EPA and with the SDWA to
the State of New Mexico. The WIPP demonstrates compliance with this requirement in the WIPP
Biennial Environmental Compliance Reports (e.g., DOE, 2006).
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4 US Salt Repository Siting Studies

Pierce & Rich (1958 & 1962) presented a summary of late 1950’s USGS regional salt characterization
work, producing reports that included an inventory of US salt deposits. These studies identified four
regions as potentially suitable for a salt-based nuclear waste repository. The salt regions of interest were
(see Figure 1 for locations):

e Salina Group bedded salt of the Michigan and Appalachian basins;

e Gulf Coast domal salt;

e Permian Basin bedded salt of southwestern Kansas, western Oklahoma, western Texas, and

southeastern New Mexico; and

e The Paradox Basin, primarily in southeastern Utah and southwestern Colorado.
This study was later confirmed by further more detailed studies of salt deposits (Johnson & Gonzales,
1978) and anhydrite deposits (Dean & Johnson, 1989). Strong public objection and lack of state
cooperation prevented any significant characterization or research efforts related to radioactive waste
disposal in the Michigan and Appalachian Basins of the northeastern US (Lomenick, 1996: 8D.2).

Project Salt VVault was a solid waste disposal demonstration in bedded salt performed by ORNL in Lyons,
Kansas. The AEC intended to convert the project into a pilot plant for storage of HLW, having prepared
an “Environmental Statement” for the site (AEC, 1971). Despite these intentions, the Lyons site was
abandoned due to nearby solution mining and questionably plugged oil and gas boreholes. With help from
the USGS, ORNL began looking in the Permian basin for a different disposal site in Texas or New
Mexico. A location northeast of the current WIPP site was chosen for further study. ORNL cored two
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exploratory boreholes through the Permian salt at this location (AEC-7 and AEC-8). A major site
characterization effort was undertaken by SNL for the Los Medafios area (Powers, et al., 1978). After
early geologic complexities and pressurized brine were encountered in the ERDA-6 borehole, the site was
moved southwest to its current location.

In the mid-1970’s, OWI and later ONWI looked for a HLW Permian Basin salt site in Texas or
Oklahoma, since no favorable location was available in Kansas, and the WIPP site in southeastern New
Mexico was already planned to be limited to defense-generated waste. After screening studies into several
Permian sub-basins, the Palo Duro Basin was selected because it contains salt deposits of adequate
thickness and a minimal amount of oil and gas activity (Lomenick, 1996: §K.1).

From 1978 to 1981 several ONWI HLW characterization efforts cored boreholes in different domes and
features of the Paradox Basin of western Colorado and eastern Utah (Lomenick, 1996: §D.3). From 1978
through 1985, over 100 Gulf Coast salt domes in east Texas, northern Louisiana, and Mississippi were
characterized for consideration as HLW disposal sites, out of the more than 500 known and inferred salt
domes (Lomenick, 1996: 8G.1.1). More detailed studies considered seven domal salt sites, but by 1985
consideration had focused on Richton and Cypress Creek Domes in Mississippi, Vacherie Dome in
northern Louisiana, and Oakwood Dome in east Texas. Richton Dome was finally considered the most
favored domal site (Lomenick, 1996: §D.1).
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Figure 1. Rock salt deposits in the United States (Johnson & Gonzales, 1978)

In February 1983, the US Department of Energy selected nine potentially acceptable HLW disposal sites
(Lomenick, 1996: Appendix G). These nine sites included two non-salt sites (Hanford and Yucca
Mountain), and seven domal or bedded salt sites. Of the seven salt sites, two were southeastern Utah
locations in the Gibson Dome of the Paradox Basin (Davis Canyon and Lavender Canyon), two were
locations in the Palo Duro Basin of northern Texas (Deaf Smith and Swisher), and three were Gulf Coast
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domal salt sites. The domal salt sites were Vacherie Dome in northern Louisiana and Richton and Cypress
Creek Domes in southern Mississippi.

In 1986 DOE reduced the list of nine potentially acceptable HLW sites down to three sites for
characterization (Lomenick, 1996: 86.7). The two non-salt sites (Hanford and Yucca Mountain) were
chosen, along with the Deaf Smith site in the Palo Duro Basin (US DOE, 1986). In 1987, the Nuclear
Waste Policy Act Amendments called for the phase-out of all site-specific HLW activities at all candidate
sites other than Yucca Mountain. Defense high-level waste (DHLW) was also comingled with
commercial spent fuel and other HLW now destined for Yucca Mountain, and was no longer considered
for disposal at the defense-only waste WIPP site.
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5 Repository Salt Research Projects

This section begins with a historical summary describing the major salt research projects, followed by
short project descriptions with key references in each section. Section 6 groups salt tests of relevance to
the SRDI project by type giving pointers back to individual project descriptions in this section.

5.1 Salt Research Historical Summary

Project Salt Vault was the first significant in situ salt research performed in the United States. This was
both a research project and a demonstration of solid HLW disposal. In the 1960°s Salt VVault was carried
out by ORNL for the AEC in abandoned salt mines in Kansas. Once the Lyons site was rejected as a
repository location, focus shifted to the Los Medafios area of New Mexico.

Early heated salt tests were conducted in 1968 at the Asse facility in Germany, while low- and
intermediate-level wastes were actively being disposed elsewhere in the abandoned potash and salt mine.

In 1975, SNL became the lead laboratory on the southeastern New Mexico disposal project started by
ORNL. SNL continued laboratory salt creep testing, begun by ORNL on salt cores collected from the
AEC-7 and AEC-8 boreholes (Mora, 1999). Since limited salt was available for testing from these
boreholes, larger samples and tests were sought from the nearby Mississippi Chemical Company (MCC)
potash mine. Instrumentation was installed to monitor creep closure of the potash mine workings, and in
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situ tests were planned. Laboratory tests began immediately on larger salt samples collected from the
MCC potash mine to investigate brine migration and the thermal properties of salt (e.g., Salt Block | &

).

In 1978 in situ heated salt tests began at Avery Island for investigation of commercial HLW disposal in
salt domes. Laboratory creep and thermal testing of salt samples continued using core from WIPP, Avery
Island, and several candidate HLW repository sites. The first underground excavations at the WIPP site
were completed in 1981, Site Preliminary Design Validation (SPDV) work by Bechtel continued through
1983, included the first WIPP closure measurements and detailed site geology. SNL’s work on the WIPP
site included contributing to the site design with Bechtel and the development of a significant in situ salt
testing program.

In situ tests at the Avery Island and the MCC continued through 1984. These locations were not
considered potential repository locations, but because of their immediate availability, they were used as
testing locations to both refine underground testing techniques and compare the variability of salt
properties across different sites.

The three main in situ research programs at WIPP were Thermal/Structural Interactions (TSI) program,
the Waste Package Performance (WPP) program, and the Plugging & Sealing Program (PSP). The plans
for these tests were well documented, numerically simulated beforehand using the best available models,
and subject to a rigorous peer-review process. As the test designs were finalized, mining of the testing
area began with Room D in 1984, and continued through 1986. While mining progressed elsewhere in
WIPP, experimental rooms were instrumented and heaters were installed, with the first in situ heater tests
(A and B rooms) turned on in 1985.

At the same time the WIPP experimental areas were being excavated, site characterization work was
ongoing at the Deaf Smith site in Texas. Although only borehole cores were collected (no shafts were
mined), laboratory creep tests were carried out by the ONWI. Heated brine inflow experiments with
radioactive sources were also being carried out from 1983 to 1987 at the Asse facility in Germany.

After the 1987 amendment to the NWPA, the Deaf Smith site was abandoned and the only US salt
research remaining related to heat-generating waste was DHLW research already ongoing at the WIPP
(i.e., TSI tests and DHLW WPP tests) that were now ordered to wrap up as quickly as possible. Salt
research related to the WIPP TRU waste mission continued, including the PSP studies (e.g., Room Q
brine inflow).

Drift-scale heated salt tests were conducted at the Asse facility from 1990 to 1999. These tests were
followed up by a significant laboratory testing program (BAMBUS II), dedicated to the post-mortem
analysis of the instrumentation and crushed salt around the heated disposal casks.

Hansen & Leigh (2011) give a recent high-level summary of salt work completed to date around the
world. They include a vision for future heat-generating nuclear waste disposal in salt, drawing from
SNL’s role as lead laboratory on the WIPP, Yucca Mountain, and Strategic Petroleum Reserve projects.
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5.2 Project Salt Vault, Kansas

Project Salt VVault was a disposal demonstration of high-level solidified radioactive waste in an abandoned
Carey Salt Company mine 300 m below ground surface (bgs) in Lyons, Kansas (operational from 1890-
1948). The project was started in the early 1960°s by ORNL and was funded by the AEC Division of
Reactor Development and Technology. The disposal demonstration included the transportation of
irradiated fuel from the Engineering Test Reactor at the Idaho Plant (now ldaho National Laboratory) and
the development of waste handling processes and disposal infrastructure at the bedded salt mine.

Early ORNL in situ experiments (1961-1962) were performed in a different Carey Salt Company mine in
Hutchinson, Kansas. In June 1962, a 2.4 m x 2.9 m room, 0.6 m high, was excavated into a large salt
pillar and closure monitored for 214 days. The excavation was subsequently heated to 170° C (initially
heated with 11-kW heaters, the power level dropping after the first 40 days when the salt heated up), and
monitored another 511 days for room closure (Bradshaw & McClain, 1971: 84.1.1). Additional
experiments showed disposing liquid HLWs directly in salt would be impractical due to concerns
regarding volatilization and containment (Bradshaw et al., 1964). This set of experiments in part led to the
realization that liquid HLWs must be solidified before disposal. The NAS panel had considered disposal
of liquid wastes directly in salt to be the most promising option, with solidification of waste a secondary
option (Lomenick, 1996: §2.1.2).

Experiments in the Lyons Carey mine were designed to determine the structural, chemical, radiological,
and thermal waste impacts in a bedded salt environment. The bedded salt in the Carey mine had
significant quantities of non-salt components, including shale layers. Laboratory tests in Project Salt
Vault included experiments on:

e lab-scale (40 cm diameter) heated compression of model salt pillars;

e temperature and radiological impacts on salt material properties;

e corrosion studies on thermocouples, heaters and canisters;

e measurements of salt brine content; and

e temperature-induced brine inclusion migration.
Results from laboratory tests were reported in the rock mechanics literature (Lomenick & Bradshaw,
1969a & 1969b; Bradshaw & Sanchez, 1969) and in the main ORNL Salt Vault report (Bradshaw &
McClain, 1971).

In situ tests included arrays of seven waste canisters in vertical boreholes drilled into the mine floor,
which operated from November 1965 to October 1967. Six canisters were placed in a hexagonal pattern
around a central heater (see Figure 2). There were two in situ experimental arrays, one with actual waste
(canisters surrounded by supplemental heaters) and another array of canisters that only contained heaters.
Each 7-heater array had a total power of 10.5 kW, and salt temperatures over 200° C were observed at the
borehole-canister interface (Bradshaw & McClain, 1971: 814.11.3). Fuel assemblies were moved between
identical sets of boreholes (rooms 1 and 5) to allow them to be changed out twice and to allow the
boreholes to be inspected as the heat of the assemblies decayed.

Another in situ test included a rib pillar (between rooms 2 and 3) heated by an array of 22 1.5-kW heaters
on the floor around its base for approximately a year (Bradshaw & McClain, 1971: p. 347), to gain
information about creep and plastic flow of salt at elevated temperatures. In situ thermal and structural
monitoring was conducted in adjacent pillars and the mine floor. Off-gas and condensate systems were
monitored during the experiments. Two of the heaters in the rib pillar experiment were operated at a
higher power level (3 kW each) for a period of 4 months before the start of the main rib pillar test in
October 1966 (Bradshaw & McClain, 1971: 810.5.4.1). These two canisters were made from carbon and
stainless steel; the stainless steel heater container failed structurally during the test.
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Figure 2. Project Salt VVault heater array (Bradshaw & McClain, 1971)

The Simulated Waste Container Test was a corrosion heater test experiment that was added after
encountering corrosion problems with stainless steel canisters in the Modified Pillar Test. Six 4.3-kW
heaters were placed into holes in the floor and backfilled with crushed salt. The test was short-lived; the
two stainless steel canisters failed within two months, another canister failed within five months. During
the operational period, salt temperatures reached as high as 300° C (Bradshaw & McClain, 1971.:
810.5.4.2).

Laboratory brine migration studies were performed (Bradshaw & Sanchez, 1969) and off-gas condensate
was collected from heated boreholes (Bradshaw & McClain, 1971: 811.2). The large amount of brine
collected (35 liters of water in room 5, which had significant shale stringers in the salt) and the increase in
brine inflow following shutdown of the heaters were observed but were unexpected (see Figure 3).

Most Salt Vault in situ tests were initiated in November of 1965 and were terminated in October of 1967.
Fuel assemblies were returned to Idaho. The demonstration showed the feasibility of high-level
radioactive waste disposal in bedded salt.



Review and Evaluation of Salt R&D Data for Disposal of Nuclear Waste in Salt
12 September 28, 2012

ORNL-DWG 69-9190
as

© ROOM 1

TIME SINCE STARTUP (months) ® ROOM &

[+ 2 4 6 a 0 12 14 16 18 20 40 A ROOM 5
3.5 T T
i
& ROOM 1 I L SALT TEMPERATURE 94°C
- 2 ROOM 4 38 ALT { 136°C
* 30 4 ROOM 5 > —
2 { 2 L+
= s L1
§ 2.5 40% POWER 11 = o ”
B - l INCREASE /" oweR |. g ‘
PEAK SALT I Y, OFF 4
§ 2.0 TEMPERATURE IN } g o
r..._. ROOM 5, 142°C I ] .
T
é 1 | =i - L SALT TEMPERATURE IN
1.5 |—— MISCELLANEOUS g 20 CENTER OF ARRAY 154°C
8 POWER OUTAGES— L H
g — | z SALT TEMPERATURE
: 1.0 o .“"" g ROOM 4, 119°C, ROOM 1,134°C
> o - 1L]
E STaRTO / —o’—-‘ﬁf § [ SALT TEMPERATURE IN
P
s STAHTUP\ / 3 CENTER OF ROOM 4,142°C;
3.05 N < . vm’;‘;‘,’ ROOM 1, 151°C__, AP—'O
[ | r =
) — (ROOuS 1 AND 41
n=15 §-15 3-15 5-15 7-15 9-15 11-15  1-13 3-15 5-15 T-15 &
1965 1966 1967 ,
DATE

[
6-4-67 € L g L 9 0 n 2 13 14 15 % 6-18-67
DATE

Figure 3. Salt VVault brine condensate results (Bradshaw & McClain, 1971: §11.2)
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5.3 Avery Island Salt Dome, Louisiana

Beginning in 1977, The Avery Island salt mine, operated by the International Salt Company in new New
Iberia, Louisiana served as the location for a suite of in-situ tests led by OWI and later ONWI (managed
by RE/SPEC). The tests provided information regarding the behavior and suitability of salt rock as a
disposal medium for high-level civilian radioactive waste. Many laboratory tests were also conducted on
Avery Island salt cores (Hansen & Mellegard, 1980; Mellegard et al., 1983; Pfeifle et al., 1983; Senseny
et al., 1983). The in situ tests were performed in the uppermost level of the salt mine (169 m bgs). These
tests represented a comprehensive testing program that provided:

o afield database for validation of numerical models,

e (ata to develop an understanding of the response of domal salt to imposed heat and load, and

¢ instrumentation and testing techniques specifically for use in salt.
The primary in situ studies included heater tests, brine migration studies, corejacking tests, gas
permeability studies, and observations of salt creep. These tests were mostly concluded by 1983, with a
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few providing data for a short time thereafter. The Avery Island tests provided useful information in the
development and validation of numerical tools and measurement techniques used later in WIPP in situ
tests (see Section 5.6).

5.3.1 Avery Island In Situ Heater Tests

Three simulated waste canister heater tests (Sites A, B & C) were conducted in the Avery Island salt
mine, beginning in June 1978. The test measured temperature and displacement (Llewellyn, 1977; Just,
1981; Van Sambeek et al., 1983). Site A was used to estimate domal salt thermal conductivity, having
three heat flux meters installed (Wagner, 1982). Sites B and C operated approximately at the heat load
expected from HLW spent fuel canisters. Site B used a 3-kW heater, while Site C used a central 4-kW
heater and eight peripheral heaters totaling 5.6 kW (see Figure 4) to re-create a regional temperature field
due to emplacement of an array of HLW canisters (a total power of 9.6 kW — Waldman & Stickney,
1984). Sites A and B heaters used no backfill next to the heaters (sand below the heaters and rock wool
insulation at the hole top), and Site C heater was placed in crushed-salt backfill. All three heater tests
operated continuously for over three years without any major equipment malfunctions or interruptions;
Site C operated for five years (1858 days). A large quantity of temperature distribution, heat flux,
displacement, and stress data were produced by the tests (Van Sambeek et al., 1983; Waldman &
Stickney, 1984).
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Figure 4. Avery Island in situ heater test at Site C (Van Sambeek et al. 1983)

5.3.2 Avery Island Brine Migration Studies

Dome salt contains between one and two orders of magnitude less water than bedded salt (Shefelbine,
1982). These in situ experiments interrelated field, laboratory, and analytical results for the purpose of
determining the rate and amount of brine movement in heated dome salt (Krause & Gnirk, 1982). Three
sets of experimental conditions were tested by Krause (1983):

e AB - Natural brine movement under ambient temperatures,

¢ NB — Natural brine movement under elevated temperatures, and

e SB - Synthetic brine movement under elevated temperatures.
The NB and SB tests used 1-kW resistive heaters similar to the peripheral heaters used at Heater Test Site
C. The brine movement was detected by collecting moisture via a nitrogen purging and desiccant
extraction system. Results from this series of tests are summarized in Figure 5.
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Figure 5. Avery Island brine inflow results (Krause, 1983)

In another set of Avery Island brine inflow tests by SNL (Ewing, 1981) the heating was provided over
138 days by 2-kW electric quartz lamps in a borehole. In these tests 6 grams of brine accumulated in the
heater during heating, at an average rate of 0.02 grams/day, with an additional 2 grams flowing into the
borehole after shutting down the heaters (Shefelbine, 1982).

5.3.3 Avery Island Accelerated Borehole Closure Tests

The accelerated borehole closure (corejacking) tests measured the time-dependent change in the internal
diameter of a hollow cylinder of rock salt subjected to constant pressurization and constant temperature
on its external surface (Van Sambeek, 1984; VVan Sambeek & Stickney, 1984). External loading of the
hollow cylinder was accomplished using two overlapping sets of curved metal flatjacks (corejacks); see
Figure 6.The suite of tests consisted of a matrix of ambient and heated conditions (1-kW heaters attached
to the corejacks brought the salt to 60° C), combined with ambient, ~11 MPa, and ~15 MPa pressure
loads. Tests were performed for various lengths of time, from a few to 328 days. These experimental
results were helpful in guiding models refinements (Stickney, 1987).
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Figure 6. Avery Island corejacking experiment (Stickney, 1987)
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5.4 Mississippi Chemical Company Potash Mine, New Mexico

Prior to the availability of underground access at the WIPP site, in situ heater, brine inflow, and salt
deformation experiments were performed in the nearby MCC potash mine (Sattler & Hunter, 1979;
Ewing, 1981; Molecke, 1984). The MCC mine is in the McNutt Potash Zone of the same Permian salt
formation that WIPP is located in, at a depth of 350 m bgs.

The general objectives of these experiments were similar to those at Avery Island and included:
e evaluation of the thermochemical and mechanical response of bedded salt to heat sources;
e testing package material/salt interactions; and
e evaluation of instrumentation and experiment designs.

5.4.1 MCC Large-Scale Deformation Test

Before 1978 two large-scale instrumented pillar deformation tests were fielded in the MCC Mine (Sattler
& Christensen, 1980). These tests not only measured the high rate, large deformation (~1 cm/day closure)
of pillars during high extraction (90%) retreat mining, but also served as the test bed for development of
geomechanical instrumentation. Newly developed borehole stress meters were first field evaluated in
these tests (Cook & Ames, 1979). This field test was SNL’s first experience with thermal-structural
measurements in the underground environment under mining conditions, and was a valuable training
situation for future underground tests.

5.4.2 MCC Heated Brine Inflow Test

A MCC in situ brine-inflow experiment was conducted, using the same equipment as the SNL Avery
Island tests, in the same stratum from which Salt Block | and Il samples were taken (Ewing, 1981;
Shefelbine, 1982). Small water inflow rates were measured to the unheated boreholes up to three months.
The heated experiment ran for 113 days, during which 188 grams of water flowed to a 2-kW heater. A
relatively large amount of water was collected (87 grams in 16 days), at a rate of 0.4 grams/day observed
during the longest uninterrupted operational period. Brine inflow pulses were observed when the heater
power was cutoff, increased, or decreased. A power interruption, followed by an episode of overheating
around 35 days (observed salt temperatures of 270° C, assumed to be beyond the salt decrepitation point)
caused a large spike in water inflow over a short period of time, which overflowed the brine collection
system (Ewing, 1981).

Quantities of salt encrustations in the boreholes measured during post-test investigations were consistent
with the assumption that all the collected water evaporated from inflowing brine, and inconsistent with
the vapor-phase model for brine inflow. Observations about the salt encrustations were generally
consistent with both stress-gradient and fluid-inclusion-motion models (Shefelbine, 1982).

5.4.3 MCC Material Interaction Tests

A six-part Waste Package Materials Field Tests (Molecke, 1984) was conducted in the MCC potash mine
in 1981 through 1983 (see Figure 7). This series of tests, which exposed metal samples to brine, crushed
salt, 1.5-kW heaters, and borehole creep closure, was a direct precursor and practice-bed for the WIPP
simulated DHLW experiments in Rooms Al and B (see Section 5.6.4.1). These tests allowed SNL to
develop applicable test emplacement, measurement, and sampling techniques. Thermal conductivity data
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for backfill materials (including crushed WIPP salt) were also determined from in situ data (Molecke &
Torres, 1983).

VERTICAL BRINE
DISPLACEMENT Y INJECTION
GAGE i

TUBES (%)

| BACKFILL
THERMO-

. COUPLE

ARRAY

o r o=
T3 19 L i
saLT TueRMocouries  Euljid | R
JI“EQLH Tl
ELECTRICAL gl ;
;
RESISTIVITY — = s 1 ]

o o
[T
ELECTRODES s7 uwrll
Nl ||=III E
-1
PRESSURE GAGES | m-? ;

52m
IN.)

CANISTER
THERMOCOUPLES

MID-POINT

BACKFILL

THERMOCOUPLE
ARRAY

CORROSION
SAMPLES,

|~4|en (16N, )~|

WASTE PACKAGE MATERIALS TEST IN S.E.NM SALT
EMPLACEMENT AND INSTRUMENTATION

Figure 7. Heater and package corrosion test in the MCC potash mine (Molecke, 1984)

MCC references

Cook, C. W., & Ames, E. S. (1980). Borehole-inclusion stressmeter measurements in bedded salt.
SAND79-0377.

Ewing, R. I. (1981). Preliminary Moisture Release Experiment in a Potash Mine in Southeastern New
Mexico. SAND81-1318.

Molecke, M. A. (1984). Test Plan: Waste Package Performance Technology Experiments for Simulated
DHLW (WPP-DHLW-TE). TP-SITED-020.

Molecke, M. A., & Torres, T. M. (1983). The Waste package materials field test in S.E. New Mexico salt.
SAND83-1516C.

Sattler, A. R., & Hunter, T. O. (1979). Pre-WIPP in-situ experiments in salt. Part I. Executive summary.
Part Il. Program description. SAND79-0625.

Sattler, A. R., & Christensen, C. L. (1980). Measurements of very large deformations in potash salt in
conjunction with an ongoing mining operation. SAND79-2254.

Shefelbine, H. C. (1982). Brine migration: A summary report. SAND82-0152.

5.5 Deaf Smith Site, Texas

The Deaf Smith, Texas site was a potential civilian HLW site located at in Permian bedded evaporite
deposits of the Palo Duro Basin in northern Texas. The site was the one of the potential high-level
radioactive waste disposal sites that DOE was analyzing as directed by Congress (DOE, 1986). The goal
was to derive site characterization information and develop a conceptual repository design such that an
EIS could be developed. Some laboratory creep tests were performed on core collected from boreholes
(Pfeifle et al., 1983a & 1983b), but most of the historical information relating to this site consists of
planning documents, due to the timing of this investigation. A Congressional act in 1987 removed this
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site from the list for further consideration. The following describes the planned characterization activities
in the site’s planning documents. Lomenick (1996) summarizes the early characterization efforts and
regulatory milestones associated with the Deaf Smith in his Appendix K.

A draft Deaf Smith site characterization plan (SCP) was completed in January 1988 (DOE, 1988:
Volumes 1-10), but no EIS or significant site-specific characterization work was actually completed. The
basic purpose of the SCP was to:
o Describe the site, conceptual repository designs, an appropriate waste package, and the waste-
emplacement environment in detail.
¢ Identify uncertainties and limitations identified during site screening, for resolution during site
characterization.
o Describe general work plans, including performance confirmation needed to resolve issues,
reduce data uncertainties, and make site-suitability findings.
Develop information needed for an EIS and licensing documents suitable for submission to the NRC.
Part A (Volumes 1-3) of the Deaf Smith SCP included discussion of the following topics:
e geologic characteristics of the site and the surrounding region;
e geomechanical and thermomechanical properties of the proposed host and rock and its
environment;
hydrologic and hydrogeologic features of the site and surrounding region;
geochemical, mineralogical, petrological, and hydro-chemical site analyses;
present and past meteorological and climate data and site analyses;
models and analyses used in previous and current site investigation activities; and
preliminary conceptual repository and waste package designs appropriate for existing site
knowledge.

Volumes 1 through 3 of the Deaf Smith SCP constituted Part A, which was presented in sufficient detail
to prepare the reader for the discussion of proposed site characterization activities in Part B (Volumes 4
through 10).

Volumes 4 through 10 of the Deaf Smith SCP included the detailed site investigation program (Part B).
These plans were quite detailed and contained data from other salt disposal programs such as the Asse
mine in Germany, the Waste Isolation Pilot Plant, and Avery Island for comparison with the planned Deaf
Smith site experimental results.
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5.6 Waste Isolation Pilot Plant Site, New Mexico

The WIPP is located 659 m bgs in Permian salt deposits east of Carlsbad, New Mexico. WIPP is currently
an operating repository for TRU waste. It was an active research location for in situ testing of both TRU
and defense high-level (DHLW) wastes until 1987, when the mission of WIPP was limited to TRU waste.
A large-scale underground testing program resulted in a great deal of data and reports, leading to a new
understanding regarding the behavior of bedded salt under repository conditions. The results that may be
relevant to the SRDI mission are summarized in this section.

There are several historical accounts of the events and science associated with WIPP. Rechard (2000)
gives a brief timeline of WIPP developments and regulatory milestones. Mora (1999) is a longer
documentary of WIPP history up to licensing and opening (1974-1999). The National Research Council
(1996) has prepared a book that described the research used in WIPP to a wider audience. Matalucci
(1988) is a color pamphlet with photos describing the larger WIPP in situ tests, while SNL (1987) is a
pamphlet about WIPP science activities prepared for a stakeholder audience.

A large number of in situ salt experiments were conducted in the underground at WIPP from 1983-1995
(Matalucci et al., 1982; SNL, 1987; Munson et al., 1997). Some of these tests were conducted to provide
information immediately relevant to the TRU waste WIPP design (e.g., plugging and sealing), while other
tests were only relevant to DHLW, and were conducted in WIPP because of the site’s availability.
Summaries of underground in situ WIPP testing can be found in Matalucci (1988), Tyler et al. (1988),
and Munson et al. (1997).Figure 8 shows the WIPP underground facility, locating major experimental
locations.
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Figure 8. WIPP underground test and experimental areas (Munson et al., 1997)

5.6.1 Quality Assurance/Quality Control for WIPP In Situ Tests

The primary WIPP in situ testing plan was Matalucci et al. (1982), with preliminary testing direction laid
out in detail in the Sandia National Laboratories FY79 plan (SNL, 1979). All significant experiments had
their own individual test plans, which referenced the main Matalucci et al (1982) report. The quality
assurance (QA) program for the group performing the in situ tests was governed by a high-level WIPP
QA Program Plan (Romero, 1988). These test planning documents and QA guidelines applied to the
laboratory testing, the in situ testing, and modeling exercises done at WIPP.
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5.6.2 WIPP Laboratory Heated Salt Tests

Several laboratory investigations related to heated salt and brine migration were performed, in addition to
the creep testing discussed in Section 5.6.3.1. These tests, along with some early in situ tests at Avery
Island and the MCC potash mine, are summarized in Shefelbine (1982). In general, domal salt has less
water than bedded salt, and non-salt layers can be a large source of water in bedded salt. Laboratory
experiments in the late 1970°s and early 1980’s were conducted with relatively pure salt, and predicted
somewhat low brine inflow rates. WIPP brine inflow rates in the PSP (Rooms A1, B, D, and Q, see
Section 5.6.5) experienced higher inflow rates than these laboratory tests predicted, in some cases due to
geologic heterogeneity and other times attributed to damage-induced heterogeneity. Despite the apparent
underestimation of these tests compared to some WIPP in situ tests, their results still clearly explain the
macroscopic flow processes in salt. It was previously hypothesized that significant brine migration
occurred due to migration of fluid inclusions under a thermal gradient (e.g., Jenks, 1979; Olander et al.,
1980), but these tests showed in most cases this was a secondary effect.

5.6.2.1 1-kg Experiment

Hohlfelder (1979) used a salt sample testing apparatus to compare measurements of moisture release from
heated salt between three different measurement approaches. The three methods were:
1) weighing the samples before and after heating, equating the change to water loss;
2) purging the sample environment with very dry nitrogen, then measuring the water in the nitrogen
outflow using dew-point gages;
3) performing the same purging with nitrogen, but passing the gas through desiccant canisters to
compute moisture release, weighing the canisters before and after exposure.
The results of the three approaches agreed to within 10%, validating the approaches used in WIPP and
Avery Island in situ moisture release tests.
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5.6.2.2 Salt Block | and Il Tests

Two meter-sized samples of rock salt were collected from the MCC potash mine. The samples were used
in the Salt Block | (Duffey, 1980) and Salt Block Il (Hohlfelder, 1980) larger-than-core-scale laboratory
tests.

Both tests involved a 1.5 kW central heater in a 1-m cylindrical block of salt. The Salt Block I test was
performed to test instrumentation, and verify the isotropy of salt thermal conductivity. Some post-test
analyses of brine content were made on samples taken from the large block of salt. The Salt Block |1 test
involved much more thermal, deformation, and brine-release monitoring during the test (see Figure 9),
and the block was also destructively analyzed after the test. Brine inclusions within 15-20 cm of the
heater were distorted, but inclusions were not the primary source of produced water from the salt
(Lambert, 1979).
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Figure 9. Salt Block Il experiment setup (Hohlfelder, 1980)

The results of these two tests also illustrated that the extensive laboratory creep testing with small-scale
borehole core samples (e.g., AEC-7, AEC-8, and ERDA-9, discussed in Section 5.6.3.1) were
representative of larger scale samples.

5.6.2.3 Salt Decrepitation Experiment

Hohlfelder et al. (1982) recorded water loss and acoustic emissions over 3 days from heating two 1.6-kg
cores of rock salt to 200° C. There were increases in brine loss rate at temperature increases and
decreases, and there was a large acoustic emission associated with decrepitation (i.e., cracking) of the salt
as the water turned to steam. Another increase in brine loss rate occurred as the salt sample cooled, which
was accompanied by more acoustic emissions, but acoustic emissions were not as strong as during initial
decrepitation. Acoustic emission monitoring was proposed in an unperformed WIPP TSI Room G
experiment (the wedge pillar).

5.6.2.4 Thermal Gradient Tests in Smaller Samples

Krause (1981) carried out an experiment on a series of one hundred 5-cm salt blocks. They were exposed
to a matrix of different temperatures (125-250° C), thermal gradients, and test lengths (168-528 hours),
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monitoring the distance brine inclusions traveled and the amount of water released by the sample. The
results indicate that more water was given off from the samples than could be explained by brine
inclusion migration alone.

Another experiment by Krause (1981) applied a thermal gradient across a thin cylindrical disk of salt,
monitoring brine release on both the hotter and colder ends. An equal amount of water was given off on
both ends, which is at variance with the hypothesis that brine migrates up-gradient, toward the heat
source.
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5.6.3 WIPP Thermal/Structural Interactions Tests

The TSI program consisted primarily of the Rooms A, B, G, and H tests (see Figure 8 for locations),
which addressed two main concerns (Munson & Matalucci, 1986). The first concern was stability of
excavated rooms during waste emplacement and possible retrieval, while the second concern was long-
term disposal room deformation to encapsulate the waste. Stability is a typical mining operation concern,
although the storage-room design emphasizes stability instead of mineral resource extraction and is
inherently more stable. TSI tests also investigated the effects of heat generated from DHLW. Heat
accelerates salt creep and speeds up room closure. The second issue focuses on the creep behavior of salt,
its ability to flow under the effects of stress and heat. The TSI tests were designed to provide information
about long-term deformation in excavated rooms and overlying rock, which encapsulates the emplaced
wastes.

Both thermal and structural interactions play key roles in the performance of an underground disposal
site. The TSI tests were designed to validate constitutive models, computer codes, and theoretical
predictions. TSI tests were implemented and fielded largely as planned (Munson et al., 1997a). Carrying
such large-scale tests out successfully in the field required a range of supporting activities and project
management (Matalucci & Munson, 1984; Munson & Matalucci, 1984; Munson et al., 1984). Important
construction, testing, and heater-related dates are given in Table 1.
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Table 1. WIPP TSI Mining Dates — from Munson et al. (1997a: Table 5.3.1)

Room/Test Begin Mining | End Mining Begin Heat End Heat
Construction and Salt 7/1981 10/1981

Handling Shafts

SPDV South Drift 11/1982 3/1983

SPDV TRU Test Panel 3/1983 4/1983

Room G Access Drift 12/1983

Hydraulic Fracture Test #1

Room D 3/1984 4/1984

Room B 5/1984 6/1984 4/1985 1/1989"
Room A2 6/1984 7/1984 10/1985 6/1990"
Room Al 9/1984 10/1984 10/1985 7/1990"
Room A3 10/1984 11/1984 10/1985 8/1990
Room G Phase | 11/1984 1/1985

Room H 1/1985 2/1985 2/1986 7/1995"
Room G Cross Drift 2/1986

Hydraulic Fracture Test #2

Air intake shaft pilot bore 12/1987 2/1988

Air intake shaft up-reaming | 5/1988 8/1988

Room Q 7/1989 8/1989

Room C Intermediate-scale 11/1989 12/1989

pilot and final boreholes

* ERMS-308061
T ERMS-410145

The need to benchmark and verify the predictive modeling capability required the generation of a very
accurate database from in situ tests. The WIPP in situ tests were developed specifically to address the
relevant issues, endorsed through extensive peer review, implemented with rigorous quality assurance
practices (Munson, et al., 1989a), and fielded with careful attention to detail. Details regarding
instrumentation can be found in Munson et al. (1997b), and details of the data acquisition and
management system are described in Mcllmoyle et al. (1987), Ball & Shepard (1987), and Ball (1992).
Since performance assessment extrapolations are made forward in time thousands of years based upon
models verified against in situ data obtained over only a few years, it was clear that the quality and
accuracy of the TSI database needed to be the highest that can possibly be obtained from the
underground. The critical nature of the database obtained from in situ tests governed the effort to gather
good data (Tyler et al., 1988: Chap. 2).

References for the following TSI section are consolidated to the end, in Section 5.6.3.9 on page 34.

5.6.3.1 WIPP TSI Salt Creep Laboratory Testing and Modeling

A principal component of the TSI Program was the laboratory testing effort (Tyler et al., 1988: §2.3).
Laboratory tests were the basis for constitutive models and material parameters. Material response data
encompassed physical properties (e.g., density or thermal conductivity) and mechanical properties (e.g.,
creep or quasi-static strength).
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The creep of heated salt is a plastic non-linear process; it has been the focus of a large amount of research
at WIPP. Laboratory testing of cores was done pre-WIPP from early boreholes, including AEC-7, AEC-8,
and ERDA-9 (Hansen, 1976). A comprehensive summary and database of salt laboratory testing is
provided in Mellegard & Munson (1996), while a similar database is given by Pfeifle & Hansen (1998)
for anhydrite samples. Built upon an early deformation-mechanism map for halite (Munson, 1979;
Munson & Dawson, 1979), a large amount of later research went into more realistic constitutive models
for the various deformation types. Competing constitutive models were proposed, developed, and refined
to explain the different phases of creep under different confining pressures, temperatures, and time scales
(Carter, 1983; Morgan & Krieg, 1987; Munson, 1993; Weatherby et al., 1993; Chan et al., 1996; Koteras
& Munson, 1996).

In 1981, nine competing numerical models were used to simulate drift-scale closure under WIPP-like
conditions. By this point the reference stratigraphy (Krieg, 1984) and conceptual model used for WIPP
had incorporated significant non-linear complexity due to the plastic nature of hot salt creep and the
inclusion of frictional slippage along clay seams. Two benchmarking exercises were carried out to
validate several structural deformation codes against each other (Krieg et al., 1980; Wayland & Bertholf,
1980; Morgan et al., 1981; Callahan & DeVries, 1995), since no analytical solutions exist for
benchmarking that can include the necessary complexities, and no WIPP field data yet existed for code
benchmarking.

The more formal “parallel calculations” exercise of Munson & Morgan (1985) built upon the experience
of Benchmark | and 1l exercises, and successfully showed the ability of SNL and its contractors to:

o define and transmit modeling test problems;

e assure control over the quality of the inputs to the calculations;

e assure complete independence of the calculations (blind participants); and

e provide a discrepancy resolution process.
The Germans subsequently used the parallel calculations approach in their modeling benchmark exercises
(Morgan et al., 1987).

As a policy, physically justifiable parameters were always used (Munson et al., 1989b). Arbitrary
adjustment of model parameters was discouraged, when the goal was simply to improve model fit to data.
Drift response calculations used state-of-the-art models, often incorporating recent advances in
constitutive models.

WIPP in situ experiments were modeled several times before and after data became available. A scoping
calculation was the first simulation performed for each in situ test (e.g., Torres, 1986); many scoping
calculations were only documented in internal memos (e.g., see references in Morgan & Stone (1985c)).
Scoping calculations were used to arrive at experimental configurations. Once each experiment was
defined, pretest parametric calculations were performed to assist detailed heater arrangements, instrument
selection, instrument ranges, and other test aspects (e.g., Branstetter, 1983; Morgan & Stone, 19853,
1985b & 1985c¢). Updated computational models were again used in these calculations. Thus, in the time
period between excavation and experiment start-up, the thermal (if applicable) and structural responses of
each in situ experiment were computed with the best computational models available. This timing for
pretest calculations allowed the as built geometry of the tests to be modeled and also allowed the latest
model refinements to be included. Data were analyzed after experiments were complete, using iteratively
more refined and realistic (e.g., three-dimensional) models (Arguello, 1989; Munson et al., 1990a; Chan
et al., 1996; Hoffman & Ehgartner, 1996).
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5.6.3.2 WIPP Site Preliminary Design Validation

Both the planned and unplanned tests in the SPDV area contributed to the TSI database of thermal and
structural rock behavior (DOE, 1983a & 1983b). The SPDV South Drift (see Figure 8) was planned as an
exploratory drift to the southern extremity of the facility. It was soon realized that the drift was ideally
two-dimensional, and it was instrumented for simple closure measurements. These data were the earliest
WIPP in situ measurements. South Drift Closure measurements showed previous creep models under-
predicted closure by a factor of three, which led to revision of the conceptual and numerical models as
TSI tests were running (Munson et al., 1989c).

The SPDV Test Panel (seeFigure 8) was instrumented and data obtained from this test panel formed the
basis for the SPDV. Pretest reference calculations were performed by the site architect/engineer (Bechtel)
and SNL (Miller et al., 1982; Branstetter, 1983). Measurements were taken in the Construction and Salt
Handling Shaft, which have also become a valuable data source for analysis of shaft closure.

5.6.3.3 WIPP Room D (Ventilation Drift)

Although Room D was not a planned TSI test, it was a ventilation drift mined before any of the TSI test
rooms (Tyler et al., 1988: p. 91). As a consequence, many of the instrument installations and
measurement procedures were developed and tested first in this room (Munson et al., 1992a; Munson et
al., 1997a). Therefore, the first TSI measurements came from this room, and they have become part of the
in situ test database (Munson et al., 1988). The Room D configuration is identical to an unheated Room
B.

5.6.3.4 WIPP TSI Room A (DHLW Mockup)

The 18-W/m? DHLW Mockup heated test was developed to simulate reference repository conditions for
DHLW. The test consists of three rooms (Al, A2, and A3 — see Figure 10) in a configuration where Room
AZ2 (the center room — see Figure 11) closely simulated the mechanical and thermal stress field of a full
repository setting (Munson, 1983a; Eaton, 1984; Morgan & Stone, 1985a). See Munson et al. (1992a &
1997a) for as-built room specifications and Munson et al. (1997b) for a detailed instrumentation
description.
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Figure 10. WIPP TSI Room A layout and heater orientation (Matalucci, 1987)

Heaters were installed in vertical boreholes, inside simulated DHLW canisters (see Figure 10). The
DHLW Mockup test was the first full-scale prototype repository test in an underground salt environment.
The data from this experiment are intended for safety case and repository design (Munson et al., 1991b &
1992c).

The Room A2 reference test configuration contained a double row of 28 0.47-kW reference heaters with
four 1.41-kW guard heaters on the ends. Rooms Al and A3 were guard rooms, used to create the
equivalent effect in Room A2 due to a gallery of repository rooms. The thermal load in the guard rooms
was created with a single row of 1.41-kW guard heaters. The thermal field produced by this arrangement
was intended to closely match the repository thermal field around the central room at early times (about
10 years). All three of the rooms were 5.5x5.5 m in cross section by 93.3 m in length (see Figure 10). The
three A rooms were separated by 18-m-wide salt pillars.

Across the three A rooms there were 34 0.47-kW reference heaters and 34 1.41-kW guard heaters,
totaling approximately 64 kW of heaters.
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Figure 11. WIPP TSI Room A2

Following the test plan of Munson (1983a), instruments were installed to measure:

o vertical and horizontal room closure;

e temperatures in salt surrounding the rooms and canisters;

o differential deformations of the salt mass surrounding the rooms; and

e stresses (pressures) in the salt mass surrounding the rooms.
Geomechanical and thermal measurements were made from July 1984 until June 1990, when a roof fall
occurred (see Figure 12). The in situ data reports of Munson et al. (1991b & 1992c¢) report the thermal
and mechanical data collected.

In addition to the main objectives cited above, this test has also provided valuable data on the
geomechanical effects of excavating adjacent rooms (a mine-by experiment). Room A2 was mined first
and instrumented before excavations of the adjacent rooms (Munson et al., 1992a). These measurements
allow comparison with computer simulations of excavation effects, including stress redistribution and
changes in strain rates (Beraun & Molecke, 1987; Wawersik, 1988).
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Figure 12. WIPP TSI Room A2 after 1990 roof collapse.

5.6.3.5 WIPP TSI Room B (Overtest)

The DHLW Overtest was an accelerated heater test of the full-scale reference mockup (Rooms A1-A3).
The Overtest in Room B increased thermal loading and experienced accelerated room closure and rock-
failure modes by increased deformation as the result of creep (Munson, 1983b; Morgan & Stone, 1985b;
Beraun & Molecke, 1987). Seventeen 1.8-kW overtest heaters were located in a single row along the
centerline of Room B (see Figure 13) with four 4-kW guard heaters at the ends. This arrangement
produced a heat flux approximately three times that in Room A2. The canister/salt interface in Room B
reached approximately 250°C (Tyler et al., 1988: p. 89).

The Room B configuration duplicated Room A2's cross-sectional dimensions of 5.5x5.5 m; the 17 test
canister heaters were spaced at 1.5-m intervals along the axis of the room. Room B also housed 12 waste-
package containers, including moisture-release tests, on each end of the central array. See WPP DHLW
Experiments in Section 5.6.4.1 and moisture release experiments in Section 5.6.5.3.

In total, Room B contained 17 1.8-kW overtest heaters, four 4-kW guard heaters, and eight 1.5-kW
DHLW waste package heaters, totaling 58.6 kW of heaters.
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Figure 13. WIPP TSI Room B (Matalucci, 1987)

The canister heaters used in Rooms B and A were mild steel Schedule 80 pipe, selected for its resistance
to brine and moisture corrosion. The canisters were cylinders closed on one end by a permanently welded
end cap and on the other by a sealed but removable cap (see Figure 10). The removable cap supported the
heater elements and internal thermocouples, containing the necessary electrical feeds for power and
instrumentation.

Following the test plan of Munson (1983b), the same quantities were measured as in Rooms A1-A3.
Measurements in Room B began in May 1984 during the excavation phase, and data were reported
through February 1988 (Morgan et al., 1986; Krumhansl et al., 1990; Munson et al., 1990b).
Instrumentation details are reported in Munson et al. (1997b).

DHLW test packages were over-cored and removed for materials corrosion testing. The unaffected
heaters remained on, but the room was ventilated for worker safety from July 1988 through April 1989
(see Figure 14).
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Figure 14. WIPP TSI Room B air temperature time series (Munson et al., 1990b)

5.6.3.6 WIPP TSI Room H (Axisymmetric Pillar)

The Heated Axisymmetric Pillar test was a cylindrically shaped salt pillar 11 m diameter x 3.05 m high
(Torres, 1983). This axisymmetric pillar was located in the center of 11 m wide x 3.05 m high excavated
annulus (see Figure 15). Room H’s large-scale imitation of a laboratory test permitted comparison
between calculations based on laboratory data and those based on field data with fewer modeling
dimensionality errors (Morgan & Stone, 1985c). Designing the test to approximate the two-dimensional
model also allowed the test to focus on rock physics. The test in Room H addressed scale effects in rock
response. Satisfactory agreement between measured and predicted response confirmed that laboratory-
generated constitutive parameters and models could be applied to large in situ rock masses.
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Figure 15. WIPP TSI Room H axisymmetric pillar with and without blankets (Matalucci, 1987)

The test uniformly heated the vertical pillar surface using a blanket heater. The detailed stratigraphy of
clay seams, argillaceous salt, anhydrite layers, and polyhalite contents was examined and documented
before the test. The blanket heater increased the pillar temperature by about 40°C over 3 years, to about
67°C (Munson et al., 1987).

The blanket heater (see Figure 15) consisted of 3-m long resistive heater tapes with an insulated covering.
The heater tapes were hung vertically against the pillar and were spaced evenly around its surface. During
normal operation the insulated door to Room H was closed to minimize heat loss and lights were kept off
to reduce extra heat sources.

Following the test plan of Torres (1983), installed instruments measured
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e vertical and horizontal room closures,
o temperatures of salt surrounding the annulus and pillar,
o differential deformations of the salt mass bordering the room, and

stresses (pressures) in the salt mass bordering the room.

Deformation and pillar fractures were monitored by displacement measurements and visual pillar surface
observations at designated locations. Measurements were made from July 1984 through July 1995. As-
built construction is given in Munson et al. (1992a & 1997a), instrumentation is reported in Munson et al.
(1997b), and early data are reported in Munson et al. (1987).

5.6.3.7 WIPP TSI Room G (Geomechanical)

The Geomechanical Evaluation test was an unheated TSI test located in Room G. It was planned as a
phased mining of a long constant cross-sectional drift (Phase 1), with several un-implemented phases
(Phases 2-4) investigating clay seam shear, rooms of variable cross section, and a wedge pillar. Room G
was located far enough away from other test rooms and mining operations to avoid being influenced by
activities outside the test area (seeFigure 8).

Following the test plan of Munson (1983c), Room G had instrument stations consisting of:
¢ anchored bolts placed in the floor, ribs, and ceiling to obtain measurements of displacements of
the salt and drift closure; and
e pressure cells that measured stress distribution.
The in situ stress test was designed to establish the magnitude of the state of stress in the WIPP salt
horizon. This test confirmed the supposition that stress is hydrostatic (Munson et al., 1992b).

The stress-verification tests in Room G consisted of a series of hydraulic fracture tests performed at
different depths, in long boreholes drilled horizontally along the axes of drifts, which were subsequently
excavated. The first 10.2-cm-diameter borehole was drilled 125 m deep into the Room G access drift.
Fluorescent dye was added to the hydraulic fluid to allow easy mapping of the fracture pattern with a
black-light source after the drift was excavated (see Figure 16). Examination of the orientation of the
major fractures mapped at the face of the excavation indicates the plane of the minor principal stress
(Wawersik & Stone, 1984; 1985; Wawersik, 1988). A similar test was carried out as part of the PSP for
the anhydrite marker beds below room C1 (see Section 5.6.5.6).

Figure 16. WIPP TSI Room G Fractures observed in hydraulic fracture tests (Matalucci, 1987)
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5.6.3.8 WIPP Rooms V and C

Air Intake Shaft Performance Tests in the air intake shaft (Room V — Munson et al., 1991a) and the
Intermediate-Scale Borehole Test between Rooms C1 and C2 (Munson et al., 1994) were additional tests
added to the TSI program after initial test plans were developed (see Figure 8 for locations).

The Room V tests measured closure at six locations in the salt portions of the air intake shaft, and
installed permanent gages at three locations. An apparatus was constructed to install measurement points
behind the borehole up-reaming drill as soon as possible, while it was still reaming the pilot bore to its
final 6.2-m diameter. The as-built construction of the air intake shaft test is discussed in Munson et al.
(1997a), while the data are reported in Munson et al. (1995).

The intermediate-scale borehole test was performed to determine if the discrepancy between modeled and
observed drift closure rates were a question of scale. In 1989, a 0.91-m diameter borehole was drilled
through the 10-m pillar between Rooms C1 and C2. It was an opportunity to test three-dimensional codes
and observe mining effects (Munson et al., 1992a). The as-built construction of the intermediate-scale
borehole test is discussed in Munson et al. (1997a), while the data are reported in Munson et al. (1994).
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5.6.4 WIPP Waste Package Performance Tests

The WPP test program was designed to test the effects of the repository environment on containers for
CH TRU waste, RH TRU waste, and DHLW (Molecke, 1984; Matalucci, 1984). The program consisted
of four different experiments, which investigated the durability and reactions of various containers or
container materials (including backfills) in the host rock.

During underground in situ testing, waste packages were an important component in WIPP research,
because the container materials were to effectively isolate the wastes for years (5-year retrievability
period for TRU wastes; up to 1000 years for DHLW). Although the RH TRU wastes were expected to
generate on the average only 30W of heat per 3692-kg-mass container, the reference DHLW canister
produced about 0.47 kW of heat from a 2100-kg mass. The waste retrieval requirement was later removed
by the Land Withdrawal Act Amendment, which eliminated the test phase requirements for WIPP.
Current WIPP performance assessment assumptions do not take credit for the containers’ ability to reduce
contaminant transport as an engineered barrier. Transportation regulations currently limit the heat load of
CH waste to 40 W total for the TRUPAC-II shipping container (14 drums) (DOE, 2009) and RH waste to
0.3 kW total for the 72-B shipping container (3 drums) (DOE, 2010). Waste actually emplaced in WIPP is
typically much cooler than this limit; an average RH container in WIPP has a power level of about a watt
(DOE 1996: Appendix SCR).

The WPP program determined each container's resistance to corrosion, and how the container materials
reacted in a host rock environment when heat, pressure, and local geochemical interactions all exerted
their influence on the container. The program was also concerned with the effects of engineered backfill
materials emplaced around containers to further restrict the migration of radionuclides to the environment
in the event of a container breach.

All references for the WPP section are consolidated to the end in Section 5.6.4.5 on page 44.

5.6.4.1 WIPP WPP Simulated DHLW Experiment (Rooms Al & B)

The primary purpose of the DHLW Technology Experiments was to evaluate the durability and
containment integrity of waste package materials for HLW (Molecke, 1984; Molecke & Matalucci, 1984).
In these experiments, 18 full-sized, simulated-DHLW packages were placed in vertical boreholes in both
near-reference and overtest repository conditions. The only aspect not simulated in these tests was the
radiation field.

The barrier materials evaluated included DHLW canisters and overpacks (304L stainless steel, mild steel,
and TiCode-12), backfill barriers (crushed salt, low-density bentonite/sand mixture, and entrapped air),
and simulated-DHLW glass waste forms. The assumed preferred method of containing radioactive waste
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products is to mix them in glass as they are poured into a DHLW container. The glass forms were
emplaced in four of the accelerated test canisters.

Six test packages were located in Room A1l (see Figure 10). Each of these packages contained a 0.47-kW
heater without DHLW borosilicate glass. Twelve other waste-package containers were emplaced in Room
B (see Figure 13 and Figure 17). Eight of these 12 packages contained 1.5-kW heaters. Four packages
were nonradioactive DHLW glass-filled canisters, provided by Savannah River Plant and Savannah River
Laboratory. To accelerate the degradation processes, some of these 12 canisters were intentionally
damaged with slots and holes. Controlled quantities of brine were also injected into the backfill
surrounding the canisters to further accelerate degradation.

In addition, small samples of nonradioactive DHLW glass were emplaced in the backfill to assess
corrosion of the glass in the WIPP environment. In Room Al, the glass was set next to the waste
canisters; in Room B (see Figure 17), the glass was emplaced near the rock-salt/backfill interface.

Interactions between the barriers and the very near-field rock-salt environment (about 1 m) were
evaluated. Materials changes included:

e corrosion and changes in the metallurgical properties of metals,

e changes in geochemistry and thermal-physical properties of the backfill material, and

e changes in the chemistry and physical properties for simulated-DHLW glass waste forms.

Figure 17. WIPP WPP Room B DHLW overtest

Several stress variables were considered in evaluating the material properties and changes. Variables
included time, temperature, brine content, local geochemistry of the rock-salt environment, pressure, and
the combined effects of all these factors.
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Test results on materials were obtained during 1988-1989 over-coring and removal of the DHLW WPP
packages from Room B and subsequent laboratory analyses (Molecke & Sorensen, 1989; Krumhansl et
al., 1991; Molecke et al., 1993). The six waste packages in Room Al were not removed, and currently
remain in WIPP. In situ data were also collected by thermocouples and pressure gages and used in
subsequent simulations (Molecke & Beraun, 1986; Beraun & Molecke, 1987a & 1987D).

5.6.4.2 WIPP WPP Materials Interface Interactions Test (Room J)

In the MIIT, a total of 1845 “pineapple-slice-shaped” samples of waste-package materials were placed on
electric heaters and inserted into brine-filled boreholes (see Figure 18). MIIT was primarily a series of in
situ waste-form leaching tests. The materials were retrieved and examined by surface and solution
analyses after 6 months, 1 year, 2 years, and 5 years of exposure, to determine their long-term
performance (Molecke & Wicks, 1986). The MIIT program was a joint effort between SNL and Savannah
River Laboratory. It evaluated performance of waste glass forms produced in the US, Belgium, Canada,
France, Germany, Japan, Sweden, and the United Kingdom.
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Figure 18. WIPP WPP MIIT test assemblies installed in Room J.

The waste-package materials used in the MIIT included 980 waste-form samples of 15 different
compositions. Along with the waste forms, the test included 278 canister or overpack metals (some pre-
stressed, others containing pits, and many containing welds) and 587 salt and backfill geologic specimens.
The MIIT studied a glass ceramic form, an aluminosilicate form, and a TRU waste glass system as part of
the waste-form samples.

The MIIT consisted of two major parts: MIIT-MI (Multiple Interactions) and MIIT-SS (Surface/Solution
Analyses). The MIIT-MI assessed wasteform performance as a function of the proposed waste-package
components (e.g., glass, metal, rock salt). The MIIT-SS represented the bulk of the test effort and was
grouped into three types of experiments:

o simplified interaction between glass and salt;

e interaction between three components (glass, salt, metal); and

e an assembly of large glass cylinders.
The MIIT-SS were the first series of field tests involving nuclear waste glasses where in situ solution
analyses was coupled with both bulk and surface analyses of leached waste forms.
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The MIIT assemblies were emplaced in Room J on July 1986 into 50 8-cm diameter boreholes, each 1.2
or 2.1 m deep. All tests were kept at 90°C (£5°C), and most were placed in rock-salt equilibrated brine
leachant, while four were placed in dry crushed salt. At after 5 years (1991), the remaining samples were
removed for final analyses (Covington et al., 1991; Wicks et al., 1991; Molecke & Wicks, 1993; Molecke
et al., 1993c; Wicks & Molecke, 1993).

5.6.4.3 WIPP WPP Simulated CH & RH TRU Experiments (Rooms J & T)

The simulated CH and RH TRU waste technology experiments evaluated the durability, corrosion
behavior, and crushing of TRU waste containers. In these tests, Room J CH TRU drums were exposed to
overtest conditions, while Room T waste packages were emplaced in a normal repository environment
(Molecke, 1986; Tyler et al., 1988: § 4.1.1-4.1.2). The containers in both rooms were evaluated for metals
durability, alterations, and degradation. Interactions were studied between the containers and several
backfill materials.

Both Rooms J and T housed separate experiments in addition to the drum evaluation (see Figure 19).
Nuclide brine migration tests were performed in the brine pool in Room J, and drum deformation was
evaluated in Room T. RH waste containers were only emplaced in the walls of Room T (Arguello et al.,
1988; Molecke et al., 1993a).

Room J

Room J's overtest conditions included elevated temperature (40° C) and high humidity. A brine pool
created humidity believed to correspond to worst-case accelerated conditions (see Figure 20). Through
wicking action, the pool moistened crushed salt and bentonite backfills. A total of 174 CH TRU
containers were emplaced in Room J: some were immersed in the brine pool, others were covered by one
of two types of backfill (salt and salt/bentonite), and a third group was subject only to humid air.

All of these containers were evaluated for metals durability, alterations, and degradation, including:
e corrosion and metallurgical property changes for metals,
e anticorrosion effectiveness of waste container paint coatings,
e geochemical and thermomechanical changes of backfill materials, and
e interactions between the backfill and the near-field rock-salt environment.
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Figure 20. Room J CH TRU CH drums and crushed salt in brine pool experiment

Data were collected through samples, (i.e., periodic backfill cores, TRU container removal, and brine pool
sampling), subsequent lab analyses, and in situ instrumentation (Molecke, et al., 1993b).

In addition to container durability, Room J also provided data on near-field nuclide migration. Non-
radioactive chemical tracers were used to simulate TRU radionuclides. Tracers were also used to monitor
migration or seepage from the drums into the predominantly anhydrite marker bed, located about 0.3 m
below the bottom of the brine pool (Tyler et al., 1988: §4.3.3.1.6; Molecke et al., 1993c).

Room T

The Room T reference environment was identical to the rest of the WIPP underground area, except for the
hotter CH TRU area. Room T contained 8 RH TRU canisters (14 more were proposed but never installed)
and 240 CH TRU drums. The RH TRU containers were emplaced in horizontal boreholes to represent the
expected WIPP storage configuration. The CH drums were arranged in six-packs stacked three drums
high.

All 8 RH canisters contained an adjustable 0.3-kW electric heater, used to simulate the thermal output of
actual RH wastes. The RH canisters were on roller support assemblies in the unlined horizontal boreholes.
This emplacement geometry allowed evaluation of effectiveness, ease of emplacement, retrieval
techniques, and use of tailored backfills (VandeKraats, 1986). The test measured vertical borehole closure
using convergence displacement gages installed between the waste canisters and borehole wall.
Temperature measurements were made from installed thermocouples. Moisture-inflow measurements
were made by sampling backfill in the boreholes (Molecke, 1992). The RH canisters currently remain
emplaced in the WIPP underground.
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Figure 21. WIPP WPP Room T backfilled CH canister experiment

The 240 CH TRU waste drums were evaluated for durability, alterations, and degradation similar to that
done for the CH TRU drums in Room J. Most of the drums in Room T (and some in Room J) were filled
with 150 kg with crushed WIPP salt (Tyler et al., 1988: §4.3.3.1.2). About half of Room T's waste drums
were covered with either salt or salt/bentonite backfill (see Figure 21), which remain emplaced in the
WIPP underground today. Backfill materials, including crushed salt and a bentonite/salt mixture, were
emplaced to surround the drums. Because the reference repository conditions were expected to deform the
drums (due to the design for the drum stack and the room geometry), the pressure exerted by room
closure on the stacks was monitored using pressure transducers.

5.6.4.4 WIPP WPP Radioactive Source-Term Tests

Several tests involving radioactive sources were planned for WIPP, but none of them were ever realized,
due to logistical and political problems obtaining and handling wastes in the WIPP underground. The first
major planned radioactive test was a DHLW test in in “Room W.” Different versions of this test were
discussed in Molecke & Matalucci (1984) and Matalucci (1988a). After the NWPA was amended in
1987, the test was re-imagined as a TRU waste test (Tyler et al., 1988: 8§4.1.5), before it was dropped
completely.

The bin-scale and alcove tests were designed to investigate waste degradation, gas generation, and waste
package interactions for TRU wastes under repository conditions (Molecke, 1990a & 1990b). These tests
were planned, initialized, and revised (Lappin et al., 1990), but never executed underground at WIPP.
Alcoves north of Panel 1 were mine and outfitted with instrumentation (see location inFigure 8), with
some test bins installed (see Figure 22).
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Figure 22. WIPP Bin-Scale Test instrumentation in alcove north of Panel 1
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5.6.5 WIPP Plugging and Sealing Program Tests

The PSP included nine in situ tests and was responsible for developing materials and emplacement
techniques for use in plugging shafts, drifts, and nearby boreholes to limit groundwater flow in both the
short and long term. The PSP tests were grouped into two major technical areas: (1) characterizing the
hydraulic properties of evaporite formations, and (2) developing seal materials and evaluating the seals.

In this report, we review brine inflow monitoring under ambient and heated conditions, a hydraulic
fracturing test done in the anhydrite marker beds, and investigations into the reconsolidation of crushed
salt. We have not reported the extensive PSP investigations into shaft seal performance, gas and brine
permeability measurements, non-crushed salt sealing materials (e.g., salt-based cements, asphalts, and
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bentonite), and seal integrity testing. This material can be found summarized in Tyler et al. (1988: Chap.
3), Nowak et al. (1990b), and Krumhansl et al. (2000).

All the references for thePSP section are consolidated to the end in Section 5.6.5.7 on page 53.

5.6.5.1 WIPP PSP Crushed Salt Backfill

Prior to 1988, DHLW backfill development focused on assessing performance in the high temperature
environments adjacent to canister-sized electric heaters used as surrogates for DHLW containers
(Krumhansl et al., 2000: also see Section 5.6.4.1). The in situ tests placed 1.5 kW heaters (surface
temperature up to 190° C) in vertical floor holes in the salt, surrounding them with various backfills. In
some cases brine was added to the test emplacement to evaluate its impact on canister corrosion and
backfill physical properties.

Post-test analyses of the crushed salt backfill from the WIPP DHLW tests were relatively easy. No
chemical changes in the rock salt were anticipated and, even when brine was artificially introduced into
the backfill, interactions with the mild steel were confined to a skin a few millimeters thick on the canister
surface. The mechanical compaction of the crushed salt backfill was more significant. Creep deformation
of the borehole walls compressed the backfill and encapsulated the heaters so tightly that it proved
difficult to remove samples for post-test analysis. The resulting backfill had less than 1% porosity
(Molecke & Sorensen, 1989) similar to undisturbed rock salt.

Early studies on crushed salt reconsolidation revealed that short-term dry compaction only increased
density to about 80% of its theoretical maximum (Hansen, 1976; Stinebaugh, 1979; Holcomb & Hannum,
1982; Pfeifle, 1987). Later research demonstrated that adding less than 1% brine by weight accelerated
compaction, even at pressures substantially below the 15 MPa lithostatic pressure (Shor et al., 1981).
Permeabilities were obtained on the order of 1x10™*” m? for compacted salt-bentonite mixes (Pfeifle,
1991) and in the range 6x10*® — 3x10% m? for crushed salt (Brodsky, 1994). Effective barriers were
predicted to form in less than a year for crushed salt (Holcomb & Shields, 1987). Fully brine-saturated
crushed salt compacts a factor of 10 slower, due to trapping of brine (Zeuch et al., 1991).

Constitutive models have been developed and tested (Sjaardem & Krieg, 1987; Callahan, et al., 1996 &
1998; Callahan & Hansen, 2000) for the consolidation of moistened crushed salt as produced by a
continuous miner (Ran & Daemen, 1994). These were an improvement over previous simpler models
(Yost & Aronson, 1987). There was a need to simulate the reconsolidation of crushed salt because of its
use in repository seal design (Nowak & Stormont, 1987). Material parameters for the models were
derived from hydrostatic consolidation tests performed in the laboratory on WIPP crushed salt samples
(Holcomb & Shields, 1987; Holcomb & Zeuch, 1988).

5.6.5.2 Brine Release Conceptual Model Development

It was recognized during the 1960’s Salt Vault tests that bedded salt is not completely dry (Bradshaw &
McClain, 1971: 811.2; Shefelbine, 1982). Although bedded salt does not contain circulating groundwater,
it may contain up to 4% water by weight (Roedder & Bassett, 1981). The total amount of water expected
to reach buried canisters is small, but for performance and design calculations it is important to
guantitatively estimate the amount of water likely to reach waste containers. Several mechanistic
conceptual models were initially proposed and developed for long-term brine inflow toward heated
excavations in relatively pure salt (Shefelbine, 1982). Pre-WIPP models for brine flow focused on
thermally stimulated transport by mechanisms such as:

e motion of brine inclusions under a temperature gradient due to thermal effects on solubility

(Jenks, 1979; Olander et al., 1980; Gnirk et al., 1981; McCauley & Raines, 1987);
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e vapor phase transport through connected porosity due to the water vapor pressure over heated
brine (Hadley, 1981; Hadley & Faris, 1981); and
o liquid transport along connected porosity driven by a salt stress gradient (Shefelbine, 1982).

Isothermal darcy flow models for poroelastic media were subsequently developed using data from large-
scale WIPP in situ experiments (Nowak & McTigue, 1987; McTigue & Nowak, 1987; Nowak et al.,
1988, Hwang et al., 1989; Gelbard, 1992). The models were in good agreement with WIPP in situ brine
inflow measurements when pre-excavation pore pressure (hydrostatic) and permeability values (1 to 10
nanodarcies) were used (Stormont et al., 1987; Peterson, 1987). Experimental results revealed nearly
constant brine inflows to unheated test boreholes (e.g., Room D) and larger than expected inflows to
heated boreholes (e.g., Rooms Al and B).

With heating, additional darcy flow can be driven by differential thermal expansion of brine and salt. The
isothermal model for brine transport was extended to take into account the thermoelastic behavior
(McTigue, 1985) that drives flow heated boreholes. A conceptual model was developed and implemented
(Nowak & McTigue, 1987; McTigue & Nowak, 1987; McTigue, 1989). A set of independently
determined parameters (McTigue & Nowak, 1987) was then used with this model to successfully describe
observed brine inflows to both unheated and heated WIPP test boreholes.

Laboratory tests were also conducted to quantify the effects brine flow has on salt creep (Brodsky &
Munson, 1991), and some efforts were made to incorporate these observed effects into fully coupled
numerical models.

5.6.5.3 WIPP PSP Moisture Transport and Release (Rooms Al & B)

WIPP moisture release experiments (see Figure 23) were designed to quantify isothermal and heat-
induced brine inflow to four large (30 to 36 inch diameter) boreholes (Nowak, 1985 & 1986; McTigue &
Nowak, 1987; Nowak & McTigue, 1987). The moisture release experiments were integrated with waste
package full-scale interactions tests (Molecke, 1985) that simulated near-reference repository conditions
for DHLW in Rooms Al (0.47 kW/canister) and B (1.5 kW/canister). A flowing nitrogen system
continuously swept the cumulative quantities of moisture by means of a condensation and desiccant
apparatus, which was weighed periodically. Released water was measured both before and after heating
began.



Review and Evaluation of Salt R&D Data for Disposal of Nuclear Waste in Salt
48 September 28, 2012

BRINE MIGRATION ——=-1 “§ |- BRINE MIGRATION
GAS INLET FUBE ki * GAS/MOISTURE OUTLET
- — T SYSTEM
3
PLATED STEEL
SUPPORT
,
14 TOP PLAN VIEW
TRAPPED AIR
(NO) BACKFILL
... S
7 g
FI
~ 1 INSTRUMENTATION
& & ] SRP STAINLESS. LEAD-THROUGH
= 1 STEEL CANISTER MILD STEEL OVERPACK
<
w
z !
o |
z & | i WASTE PACKAGE WB1/B041
o ® 7 1500 wHEATER
P w | ONWI/W DESIGN, MILD STEEL
g w OVERPACK, §S 304L SRP CANISTER
3 . BACKFILL-TRAPPED AIR
a. BRINE MIGRATION MEASUREMENT
* = THERMOCOUPLES
il
g
:
=
L)
FIGURE 2.
&~
B
' Sandia
National
Laboratones

Figure 23. WIPP PSP moisture release experiment in Room B (Molecke, 1985)



Review and Evaluation of Salt R&D Data for Disposal of Nuclear Waste in Salt
September 28, 2012 49

Prior to the initiation of heating, water was collected from each of the four test boreholes at rates of 5 to
15 grams/day (Nowak, 1985 & 1986; Nowak & McTigue, 1987; McTigue & Nowak, 1987). The Brine
Sampling and Evaluation Program (Deal et al., 1995) results from brine seeps around the WIPP
underground are generally consistent with these rates.

After heating began, the water collection rate for each of the four boreholes rose to a peak and then
decreased (McTigue & Nowak, 1987; Nowak & McTigue, 1987). The 0.47 kW boreholes in Room Al
yielded peak inflow of about 15 to 17 grams/day; the flow rates then declined to a nearly constant value
of 10 grams/day after 100 days. Flow to the 1.5 kW boreholes in Room B continued to increase over a
longer period, rising to maximum rates of about 80 to 90 grams/day after about 100 days; the flow rate
then decreased slowly.

The inflow rates observed in Rooms Al and B at WIPP are much larger than in situ brine rates observed
at Avery Island (Section 5.3.2), the MCC potash mine (Section 5.4.2), or laboratory rates observed in
heated salt samples (Section 5.6.2), but they are the same order of magnitude inflow observed in Project
Salt Vault (Section 5.2). The high inflow rate was partially attributed to argillaceous clay layers that
intersect the boreholes.

5.6.5.4 WIPP PSP Small-Scale Brine Inflow Tests (Rooms D, L4 & Q)

Seventeen brine inflow tests were monitored from September 1987 to 1991 in unheated boreholes drilled
from three existing rooms at WIPP (Nowak, 1988; Nowak et al., 1990a). Experiments were carried out in
Room D, Room L4, and the Q access drift (see Figure 8 for locations). Borehole relative humidity data
were collected in Room D and Room L4 to check the integrity of borehole seals. Two of the boreholes in
Room D vyielded no brine over 3.5 years, while the 15 other boreholes produced between 2 and 90 kg of
brine. Similar-sized boreholes in similar locations produced inflow rates that varied by as much as 2
orders of magnitude, but most observed inflow rates were of the same order of magnitude. Decreasing,
increasing, and steady inflow rates were measured. Nine of the 15 brine-producing boreholes had similar
behavior immediately after drilling. These 9 boreholes all exhibited a relatively high initial inflow rate
followed by a fairly smooth decline with time (see Figure 24).
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Figure 24. WIPP PSP Small-Scale Brine Inflow Tests results (Finley et al., 1992)

Borehole response differences can be explained through assumed formation heterogeneities. In most cases
these heterogeneities are believed to be excavation-induced, rather than geological. Data suggest flow
near excavations has been altered by rock deformation, including fracturing (Finley et al., 1992).

5.6.5.5 WIPP PSP Large-Scale Brine Inflow Test (Room Q)

Room Q was an unheated brine inflow test in an area that was well removed from the influence of the
other WIPP excavations (see Figure 8). It was mined using a tunnel-boring machine (TBM) to create a
2.9-m-diameter cylindrical room 109 m long (Likar & Burrington, 1990). Excavation was completed in
less than 1 month from July 12 through August 8, 1989 (Munson et al., 1997: §6.3.1). Room Q geometry
and construction method were specifically selected to minimize the excavation impacts to the undisturbed
salt. The circular-shaped opening was selected to reduce the stress-induced fracturing associated with a
rectangular opening. A tunnel-boring machine was used to create the circular opening (as opposed to
drill-and-blast or continuous mining methods) to minimize excavation-induced fracturing in the drift wall.

Experimental data collected in Room Q included brine inflow, pore pressure, permeability, disturbed rock
zone (DRZ) properties, closure, humidity, and host rock salt composition (Nowak, 1989: §6.1.1). Brine
inflow data were used to validate the brine inflow models for accuracy of scale-up from boreholes (see
previous section) to room-size excavations. Seismic refraction, electrical conductivity, and room closure
data were collected to characterize the excavation-induced DRZ. Room Q is shown in Figure 25.



Review and Evaluation of Salt R&D Data for Disposal of Nuclear Waste in Salt
September 28, 2012 51

Figure 25. WIPP PSP Room Q instrumentation

Room Q also included seals to minimize evaporation and moisture loss within the room. Two temporary
seals were installed by early 1990. The permanent seal system was installed in March 1991 consisting of
two seals set 2.4 m apart to form an air lock. Each seal was constructed from an aluminum bulkhead
surrounded by an inflatable element to accommaodate radial closure (Munson et al., 1997: §6.3.2).

Mining sequence closure points were installed during excavation at the face at the one-quarter, half, and
three-quarter points along the length of the drift. Both horizontal and vertical closures were measured at
each station. In April 1990 (several months after construction completion), permanent remote closure
gages were installed (Nowak et al., 1990a). Example closure data are shown in Figure 26.

Before the room was mined, 15 boreholes were drilled and instrumented to allow pore pressure and
permeability testing before and after the mining. The holes terminated in three lines, comprising five
holes each, vertically above, vertically below, and horizontally north of the eventual centerline of the
room. All of the boreholes terminated 22.9m along the length of the room in a plane normal to the axis of
the room. In each of the three arrays, the boreholes were designed to terminate at distances of
approximately 2.4, 3.3, 4.6, 7.6, and 13.7 m from the center- line of the room. The tests conducted in
these holes before Room Q was mined provide the best representation of far-field properties of any
permeability tests performed in WIPP (Beauheim & Roberts, 2002).
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Figure 26. WIPP PSP Room Q closure data at station +28m (Munson et al., 1992)

Four anhydrite layers were isolated in the Room Q boreholes: MB138, MB139, anhydrites b and ¢, while
twelve halite intervals were isolated. Pore pressures appeared to decrease with increasing proximity to
Room Q. In some intervals, post-mining pore pressures appeared to continue to decrease with time. Pore
pressures decreased by several MPa after mining at all boreholes. The changes in hydraulic properties and
pore pressures that were observed can be attributed to one or a combination of three processes: stress
reduction, changes in pore connectivity, and flow towards Room Q (Domski et al. 1996, Section 9).

Hansen (2003: 84.7) reports on DRZ estimation in both the access drift leading to Room Q and in the
Room Q instrumentation alcove. Cross-hole and same-hole elastic wave velocity measurements in the
access drift showed a well-developed DRZ extending at least 2 m into the drift wall. Sonic velocities were
measured in the Room Q instrumentation alcove both horizontally and vertically across holes resulting in
a about a 1-m DRZ. Typically, the DRZ was most developed at mid-height of the opening, with less
damage along the floor, ceiling, and corners of the instrumentation alcove.

Early Room Q borehole data were summarized in Jensen et al. (1993). A hydrologic and structural
modeling study was carried out to gain insight into six years of brine inflow data collected in Room Q
(Freeze et al., 1997). Alternatively, flow predictions were also made using a mechanical “snow-plow”
model for creep-induced brine inflow, with moderate success (Munson, et al., 1996). Beauheim &
Roberts (2002) summarized the results of the Room Q hydrologic testing, especially related to observed
and interpreted changes in static formation pressures and permeabilities due to mining.

5.6.5.6 WIPP PSP Marker Bed Hydraulic Fracturing (Room C1)

The marker bed (MB) hydraulic fracture experiment addressed the consequences of gas generation in
disposal rooms in the Salado formation, and specifically, experimental evaluations of analyses concerning
the gas pressurization of anhydrite interbeds such as MB139 (Davies, 1991; Wawersik & Beauheim,
1991; Wawersik et al., 1997). To accomplish this, complementary hydraulic fracturing and hydrologic
tests were conducted in MB139 and MB140. Considerable variability was recorded in the measured
formation (pore) pressures and permeabilities in MB139 one to two meters below the repository horizon,
and to a lesser extent in MB140, 6 m below the floor of the experimental area in the WIPP. The observed
variability suggested a strong influence of sub-horizontal networks of preexisting partially and fully
healed fractures. It was proposed that MB139 is altered by the influence of nearby excavations (Stormont
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et al., 1987; Stormont, 1990a; Beauheim et al., 1998). MB140 served as a virgin analog of MB139 and
other anhydrite interbeds in the vicinity of the repository horizon.

The maximum breakdown pressures observed in the deeper MB140 ranged from 22-13 MPa, while they
were 19-12 MPa in MB139. Similar to the Room G hydraulic fracturing tests (see Section 5.6.3.7), it was
found the vertical principal compressive stress component was smallest. Hydraulically induced fractures
were found to propagate horizontally within the marker beds, and relatively large (0.2-0.4 mm) residual
openings were created, which were confirmed by orders-of-magnitude increases in permeability.
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5.7 German Salt Repository Sites

In Germany, radioactive waste is divided into heat-generating radioactive waste and non-heat generating
waste. Heat-generating waste is comprised of spent fuel elements and liquid HLW from reprocessing. The
liquid waste is concentrated and formed into vitrified glass blocks for disposal. Waste generating
negligible heat is made up of other primary waste such as cleaning cloths, discarded tools, used filters, or
residues from waste water treatment.

The Federal Office for Radiation Protection (BfS) is responsible for the task of erecting and operating
facilities for the disposal of German radioactive waste. Under this task BfS is responsible for three
German domal salt repositories and repository projects: the Asse heat-generating waste repository, the
Morsleben low- and medium-level non-heat generating waste repository, and the Gorleben heat-
generating waste exploratory mine. The Konrad repository is an additional repository site located in an
abandoned iron ore mine that may be suitable for low- and medium-level waste (negligible heat
generation). A decision is still pending on a repository site for heat-generating radioactive waste in
Germany (BfS, 2012).

Research and development work was carried out at the Asse salt mine from 1965 to 1995 for the final
disposal of radioactive waste in domal salt formations. Low- and medium-level waste (negligible heat
generation) was emplaced in Asse until 1978. The focus of research at Asse has included investigating the
salt/waste interaction and various emplacement technologies (BMWI 2008).
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The Morsleben repository for radioactive waste (Endlager fiir radioaktive Abfélle Morsleben) was erected
by the former East German Government and was used for the disposal of low-level and medium-level
radioactive waste from 1971 to 1991 and 1994 to 1998. The emplacement operations were stopped after
German reunification by a 1991 court order. In 2001 BfS declared the Morsleben site unsafe, stopped all
disposal operations, and began the decommissioning process of backfilling and sealing the mine and
shafts.

An October 2010 deadline for considering the Gorleben salt mine as a potential heat-generating waste
repository has been extended. Future research will focus on the occurrence and safety of saline solutions
and hydrocarbons in the salt strata, considering possible flow paths. Based on site characterization data
and research, a preliminary safety analysis and its subsequent international peer review has proposed that
the Gorleben salt mine can be converted into a repository.
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5.7.1 Gorleben Research Site

The German nuclear waste repository program evaluated salt structures throughout the country and in
1977 chose the Gorleben salt dome for further evaluation as a potential repository. Site exploration and
testing activities occurred at Gorleben from 1979 until 2000, when a 10-year moratorium was placed on
any further investigation or construction activities (BMWI, 2008). Exploration, characterization, and
experimental activities up to the moratorium are comprehensively summarized in four German Federal
Institute for Geosciences and Natural Resources (BGR) reports. Reports 1-3 describe the geological and
hydrogeological characterization of the overburden, surrounding country rock, and the salt structure
(Klinge et al., 2007; Kdéthe et al., 2007; Bornemann et al., 2008). Report 4 describes the in situ and
laboratory geotechnical investigations at the site (Bréuer et al., 2011). Detailed measurements of the
thermal, stress, permeability, pressure, and creep states of the salt dome were made and documented in
this report. The results of all the exploration work up to the moratorium were favorable regarding the
suitability of the salt dome to host a repository (BMWI, 2008).

The Gorleben salt dome is located near the town of Gorleben in Lower Saxony (see Figure 27). The dome
is a northeast-southwest aligned structure approximately 14 km x 4 km. At its shallowest, the top of the
salt is 250 m below the surface (bgs). The base of the salt structure is 3200-3400 m bgs (Bréuer et al.,
2011). The salt dome intrudes and deforms Cretaceous—Quaternary strata. Tertiary—Quaternary sediments
cover the dome to a maximum depth of 430 m, and have clearly been thinned due to salt tectonics. Uplift
rates range from 0.08 mm/year during the Cretaceous to 0.02 mm/year during Tertiary and Quaternary
time (Klinge et al., 2007; Kothe et al., 2007). Compositionally, the dome is predominantly halite, with
lesser amounts of carnallite (hydrated K-Mg chloride), anhydrite, and claystone. In the target exploration
zone for the repository (~840 m bgs), the formation is approximately 95% halite and 5% anhydrite. Due
to salt diapirism (salt tectonics), both large and small scale folding has deformed (folded, fractured,
boudinaged) anhydrite and claystone beds (Bornemann et al., 2008; Brauer et al., 2011). These features
are of interest in terms of brine and gas occurrence and movement and the geomechanical properties of
the formations.
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Figure 27. Gorleben exploratory mine (Biurrun et al., 2010)

Two cases of potential repository groundwater contamination have been simulated in the overlying
siliciclastic aquifer using three-dimensional models (Schwartz, 2012). The simpler case considers single-
phase liquid transport of radionuclides only (over 2 million years), while the more complex two-phase
case includes gas generation (over 7,000 years).

The Gorleben site was explored for hydrocarbons from the 1930’s through the 1950’s using seismic and
exploratory drilling. The salt dome had not been mined prior to the 1977 repository investigation
activities. Current mine workings include 2 shafts connected by a drift at the 840 m level. Multiple cross-
cut drifts, rooms and exploration areas have been constructed at this level for repository investigations.
Mining and construction activities ceased along with investigations in 2000 due to the moratorium
(BMWI, 2008).
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5.7.2 Asse Il Repository

Approximately 55 years of intensive salt mining shaped the Asse mine before its use as a research mine.
From approximately 1909-1925, the site was an active potash mine for carnalite. In 1925 abandoned
potash workings were backfilled with “moist” by-product salt from the potash refining process. From
1916-1964 the site was an active salt mine, with workings at the southern flank as close as 5 m to the
country rock (see yellow “Roétanhydrit” [red anhydrite] and tan “Oberer Buntsandstein” [upper colorful
sandstone] units left of mine workings in Figure 28). In 1965 the German Federal Government purchased
the mine, and in 1967 began emplacing low- and intermediate-level waste as part of a “pilot” project,
which ended in 1978. Mining has caused damage to the rock salt at the southwest flank of the mining
operations, which has led to the current brine inflow problem. Research is currently focused on
developing a safe sealing concept for the mine (BMWI 2008).

A US-German cooperative brine migration test was conducted from 1983-1987 in Asse to investigate
simultaneous effects of heat and radiation on salt (Coyle et al., 1987). The four in situ experiments used
%Co sources and 3-kW heaters, each surrounded by a ring of eight guard heaters. The test reached a
maximum temperature of 210°C in the salt, and a maximum thermal gradient 3°C/cm. Results from the
first 28 months of operation included:

e brine migration rates (see Figure 29);

e thermomechanical salt behavior (including room closure, stress, and thermal profiles);

e Dborehole gas pressures; and

e Dborehole gas analyses.
In addition to field data, laboratory analyses of pretest salt properties are also included.
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Figure 29. Asse heated brine inflow results (Coyle et al., 1987)

Gies et al. (1994) provide a summary of geological, mineralogical, geochemical, and petrophysical
studies at Asse, to characterize the rock salt before the 1990 waste storage tests began. Data are
summarized with their most important results made available for possible reuse or re-analysis.

In 1990 plans were developed for full-scale testing of a complete underground repository concept,
including disposal of HLW in vertical salt boreholes. The HAW test program planned to use 38
radioactive sources emplaced in six boreholes located in two test galleries at the 800 m mine level for five
years. The German Government decided in 1992 to immediately stop all test disposal preparation
activities, due to licensing issues. Before stopping activities, a radioactive material emplacement system
was installed and the responsible mining authority approved the system. In situ and laboratory test results
were used to investigate thermal, radiolytic, and mechanical interactions between the salt, electrical
heaters, and radiation sources. After the 1992 policy change there was a controlled shutdown of the heater
tests in 1993 and a continuation of the laboratory activities until the end of 1994 (Kuhn, 1986; Kihn &
Rothfuchs, 1989; Muller & Rothfuchs, 1994; Rothfuchs et al., 1995; Brewitz and Rothfuchs 2007).

From 1990 to 1999, the Thermal Simulation of Drift Emplacement (TSDE) test had been conducted to
simulate expected HLW repository conditions (Bollingerfehr, et al., 2004). Six 65-ton POLLUX®
disposal casks (designed for transport and disposal of spent fuel) were electrically heated (6.4 kW per
cask) and backfilled with crushed salt into two drifts (see top of Figure 30). During the 8-year test,
temperatures at the salt-container interface reached 200°C. In situ thermomechanical data were collected
in both the backfill and intact salt. Observations compared favorably with both two-dimensional and
three-dimensional model predictions.
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Figure 30. Asse TSDE in situ heater test in 1990 during installation (top) and 2000 during post-test
excavation (bottom) (Bollingerfehr et al., 2004)

The Backfill And Material Behavior in Underground Salt (BAMBUS) project involved full-scale in situ
experiments addressing backfill and intact salt behavior combined with laboratory modeling studies.
Project results showed that the relevant thermal and geomechanical processes are sufficiently well
understood and predictive models can be accurately extrapolated over wide ranges. Some difficulties
existed in simulating room closure rates and details of backfill re-consolidation.

The follow-up international BAMBUS |1 project addressed the behavior of host rock and backfill under
heated repository conditions (Bechthold & Hansen, 2003). In situ tests were used to confirm monitoring
instrument performance, waste package corrosion under repository conditions, and waste package
retrievability, in the light of the TSDE experiment. Project results were used to optimize repository design
and construction and predict the long-term performance of the excavation disturbed zone (EDZ), backfill,
and waste containers. One drift of the finished TSDE experiment was excavated to remove two of the
heater casks and associated instrumentation in the drift and backfill (see bottom of Figure 30). Laboratory
tests were performed on samples collected from the TSDE experiment to determine porosity and
permeability of the backfill material and the EDZ. To investigate observed variability in the laboratory
results of BAMBUS I, benchmarks were included with the desired test samples. The BAMBUS 11 effort
also included improvements and advances to numerical models (Rothfuchs et al., 2003).
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Kiensler et al. (2002) present experimental findings of full-scale leach tests performed on simulated
cemented waste forms over more than 20 years in brines and water. Measurements include pH/Eh,
density, leachate composition and releases of the radionuclides Cs, U, and Np. Observed radionuclide
releases are compared to small-scale laboratory tests. Excellent agreement was obtained between model
calculations and observations for U and Np concentrations.

Geochemical modeling (Metz et al., 2004) was performed on Asse with its total low- and intermediate-
level radionuclide inventory of 3 x 10" Bequerel (Bg). MgCl,-rich brine is expected to enter the
emplacement rooms and react with the cementitious waste products. Possible microbial degradation of
organic waste components in MgCl,-rich brine could produce significant quantities of CO,, resulting in
acidification of the brine and thereby an increase in radionuclide solubilities. The geochemical
environment and solubilities of Am, Np, Pu, U, Th, Tc, Sr, Cs and | were modeled for each emplacement
room. Laboratory experiments were undertaken to selectively verify the modeling predictions. The results
are applicable for the selection of buffering backfill materials for mine closure. The modeling led to the
conclusion that Portland cement and crushed salt can be used as backfill materials in different
combinations.
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5.7.3 Morsleben Repository

The Morsleben site is located in the abandoned Bartensleben mine, which was chosen in 1970 as the then-
East German location for low- and intermediate-level radioactive waste disposal. The Bartensleben shaft
was completed in 1912 and was the site of potash mining until 1918 and rock salt mining until 1969. The
first license for the waste disposal in Morsleben was issued in 1978. (Martens et al., 1995; Behlau &
Mingerzahn 2001; Ranft & Wollrath 2002; Brewitz & Rothfuchs, 2007).
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Figure 31. Location of the Morsleben repository (Behlau & Mingerzahn, 2001)

The repository is located in the upper Permian salt structure of the Aller valley zone. The salt formation
consists of folded halite, potash, and anhydrite layers, overlain by a tight caprock (Ranft & Wollrath
2002). The overall thickness of the salt formation is between 350 m and 550 m.

Ebel & Storch (1990) and Ebel (1991) present brief historical overviews of the Morsleben repository
creation, the results of research and development, and the plant construction. They describe the parties
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involved, licensing process, international cooperation, and important research and development results.
They also outline the site’s radioactive waste transportation system, disposal technologies, mine
ventilation, radiation protection, and operational rules.

Pruess et al. (2002) estimated that negligible quantities of brine that invade the repository should be able
to migrate to the biosphere during post closure. At the time of the study brine inflows into the mine were
very low. About 10 m3/year of Mg-rich salt solution flowed into the “Lager H” chamber. A location in the
central part of the mine has a brine inflow rate of approximately 1 m3/year, believed to be coming from
the local groundwater system. Herrmann (1993) showed brines originate between the evaporative body
and the overlying rocks for five mine seepage locations.

For the safety analysis of the post-operational phase of the Morsleben repository, radionuclide migration
was computed with both one-dimensional and multi-dimensional transport codes (Heidenreich, 1992).
Deviations between the low- and high-dimensional models are discussed and interpreted. Brine and
radionuclide migration in the repository is simulated using a simplified shaft-gallery model. Eilers et al.
(2003) describe the sealing of the Morsleben repository, while Resele et al. (2004) present a probabilistic
safety assessment for the Morsleben repository using simplistic models with distributions of uncertain
parameters.
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6 In Situ and Laboratory Tests by Topic

The following sections give lists of experiments (both in situ and laboratory based) which appear in
Section 5, but are organized here by test type. References and summary text are given in the relevant
portions of Section 5.

6.1 Heated Salt Tests

These tests involved observations of temperature and often geomechanical deformation accelerated by
electric heaters. The tests often involved brine migration or waste package tests at the same location.

1. The Lyons, Kansas, Project Salt Vault site (see Section 5.2 on page 10) was a HLW disposal
demonstration that had several heater tests (1965-1967).

a. Two 10.5-kW heated salt tests (7 heaters in each test). One test used radioactive material
and heaters. The test with radioactive materials moved twice between two locations as
material was switched out.

b. A 33-kW heated pillar test (22 heaters). Two of the heaters were started 4 months early at
3 kW, then reduced to 1.5 kW for the main test.

c. A 25-kW waste container test (6 heaters) only ran 2 months before several stainless steel
heaters failed from corrosion.

d. A 11-kW room closure test was conducted by ORNL pre-Salt Vault in a Hutchinson,
Kansas mine (1962-1965).

2. The Avery Island domal salt site (see Section 5.3 on page 12) was a HLW salt research site that
had heater tests and other tests with heated components (1978-1983).

a. Three canister heater tests (Sites A, B & C) ran for over 32 months

i. Site A was installed in sand backfill, and was used to estimate salt thermal
conductivity
ii. Site B was a 3-kW heater in a borehole without backfill to simulate a HLW
package
iii. Site C was a 4-kW heater with 8 peripheral heaters, backfilled around the central
heater with crushed salt (test ran for 5 years)

b. Two of the three Krause (ONWI) brine migration studies (NB & SB) were heated with 1-
KW heaters.

c. The Ewing (SNL) brine migration study was heated with a 2-kW heater.

d. Several of the accelerated borehole closure tests had 1-kW heaters incorporated with the
corejacks, which increased the salt temperature to 60° C.

3. The MCC potash mine was an interim salt test bed, before the first exploratory WIPP shaft was
constructed in 1981 (see Section 5.4 on page 16). Several heated experiments were carried out in
support of the WIPP DHLW.

a. Several brine inflow tests used 2-kW heaters, monitoring brine before and after heating.

b. Six package material tests used 1.5-kW heaters operated at various power levels with
crushed salt to accelerate exposure of metal samples set in boreholes.

4. Several WIPP-run laboratory tests were performed in the late 1970°s to investigate brine
migration in heated salt (see Section 5.6.2 on page 21).

a. Several small laboratory tests (1-kg experiment, and smaller thermal gradient tests) were
performed under heated conditions at controlled temperatures and thermal gradients to
investigate the migration of brine inclusions.

b. Salt decrepitation experiment heated two 1.6-kg salt cores beyond the point where
cracking occurred due to the thermal expansion of water changing to steam
(approximately 250° C).

¢. Salt Block I and Il experiments were 1-m cylindrical blocks of salt heated by axial 1.5-
kW heaters to investigate thermal (1) and brine migration (I1) properties of salt.
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5. Three major heated WIPP TSI tests were performed in the late 1980’s (see Section 5.6.3 on page
23).

a. Rooms Al-A3 were the DHLW Mockup experiment. This test emplaced 64 0.47- and
1.41-kW heaters into vertical boreholes in the floor, for a total power of 64 kW between
three adjacent rooms (1985-1990).

b. Room B was the DHLW Overtest experiment. This test emplaced 29 1.5-, 1.8-, and 4.0-
kW heaters into vertical boreholes in the floor, for a total power of 58.6 kW in a single
room (1985-1989).

c. Room H was the Heated Axisymmetric Pillar Test. This test wrapped a cylindrical pillar
in strip heaters and blanket insulation, operational from 1986 to 1995.

6. The WIPP WPP tests included heated aspects of materials corrosion and leaching experiments
(see Section 5.6.4 on page 37).

a. The MIT in Room J was a metal, glass, and salt leaching test that operated in 50 heated
boreholes in the floor of WIPP Room J. Most boreholes were filled with brine, and all
were maintained at 90° C for five years (1986-1991).

b. CH TRU waste package tests in Room J were operated with heaters in a brine pool that
kept the room at high humidity and elevated (40° C) temperature to simulate overtest
repository conditions.

c. RH TRU waste package tests in Room T were operated in eight horizontal boreholes in
the walls, each with a 300-W heater to simulate the proposed thermal load of RH
canisters.

7. The Asse Il repository in Germany has operated three large-scale heater tests as part of an
investigation into the disposal of heat-generating waste in salt (see Section 5.7.2 on page 58).

a. 1968 heater tests in Asse were reported with few details.

b. An extensive brine-migration test was conducted in four sets of vertical boreholes with 3-
kW heaters (1983-1987).

c. The TSDE experiment involved the emplacement of six 6.4-kW heated waste casks in
two drifts, backfilled with crushed salt (1990-1999). The BAMBUS |1 project included
excavation and testing of the material around the heaters, beginning in 2000.

6.2 Brine Migration Tests
These tests involve measurement of water (brine) inflow to boreholes under ambient or heated conditions.

1. The Lyons, Kansas, Project Salt Vault site (see Section 5.2 on page 10) was a HLW disposal
demonstration that had both laboratory and in situ brine migration tests (1965-1967).
a. Laboratory brine migration studies focused on proposed the mechanism of brine
inclusion movement up a thermal gradient.
b. Three sets of heated boreholes (rooms 1, 4 & 5) were monitored for brine inflow,
resulting in the observation that a large pulse of brine occurs after heating ends.
2. The Avery Island salt dome site (see Section 5.3 on page 12) was a HLW salt research site that
had both heated and unheated brine migration (1978-1983).
a. Krause (ONWI) performed a set of brine migration tests under three sets of conditions for
more than 200 days.
i. AB - Natural brine movement under ambient temperatures
ii. NB — Natural brine movement under elevated temperatures
iii. SB - Synthetic brine movement under elevated temperatures
b. Ewing (SNL) performed a heated set of brine migration tests
3. The MCC potash mine was an interim salt test bed, before the first exploratory WIPP shaft was
constructed in 1981 (see Section 5.4 on page 16). A brine migration experiment was monitored
for brine inflow before, during, and after heating.
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4. Several WIPP-run laboratory tests were performed in the late 1970’s to investigate brine
migration in heated salt (see Section 5.6.2 on page 21).

a. Salt decrepitation experiment heated two 1.6-kg cores while monitoring acoustic
emissions, which were highest during cracking, but increased during the cooling phase as
well.

b. Salt Block I and Il experiments were 1-m cylindrical blocks of salt heated by axial 1.5-
kW heaters. Both tests were destructively post-test analyzed to observe brine migration
effects.

c. Several small laboratory tests (1-kg experiment, and smaller thermal gradient tests) were
performed under heated conditions at controlled temperatures and thermal gradients to
investigate the migration of brine inclusions.

5. The WIPP TRU WPP tests included a large brine pool in Room J for a material corrosion and
leaching experiments (see Section 5.6.4 on page 37). Brine wicking into backfill and migration
into underlying anhydrite layers was monitored during the extent of the test.

6. The WIPP PSP involved several heated and ambient brine inflow tests (see Section 5.6.5 on page
45).

a. Heated moisture transport and release experiments were carried out in Rooms Al and B,
co-located in boreholes with the DHLW package performance tests. Heated boreholes
produced a large amount of brine while heated, possibly due to geologic heterogeneity
(1985-1987).

b. Ambient small-scale brine inflow tests were monitored in 17 boreholes in Room T, Room
L4, and the entrance to Room Q (1987-1991). Large amounts of brine, and a large
amount of variability was observed, possibly due to damage heterogeneity from
constructing the rooms and boreholes.

c. The ambient large-scale brine inflow room (Room Q) test was a 129-m long cylindrical
room constructed with a 2.9-m-diameter tunnel boring machine. Brine inflow was
monitored for several years (1991-1997).

7. The Asse Il repository in Germany operated a large brine-inflow test in as part of an investigation
into the disposal of heat-generating waste in salt (see Section 5.7.2 on page 58). Borehole
temperature, gas pressure, brine inflow mass, and brine chemistry were monitored during the test
(1983-1987).

6.3 Salt Creep Tests

These tests include heated and unheated creep closure tests, potentially useful for future benchmarking
exercises.

1. The Lyons, Kansas, Project Salt Vault site (see Section 5.2 on page 10) was a HLW disposal
demonstration that had heated and unheated salt creep experiments (1965-1967).

a. The model pillar laboratory tests were heated cylindrical cores of salt, with a groove cut
along their circumference to simulate the geometry of a circular salt pillar.

b. The heated pillar experiment monitored salt creep as a result of heaters placed at the base
of a pillar between two rooms.

c. A 11-kW room closure test was conducted by ORNL pre-Salt VVault in a Hutchinson,
Kansas mine (1962-1965).

d. Creep closure measurements were made in both the Hutchinson and Lyons Carey salt
mines (Bradshaw & McClain, 1971: Tables 4.3 & 4.4).

2. ONWI had several comparative laboratory studies on the salt creep of cores collected from
different candidate salt repository sites: including Paradox Basin Gibson Dome (UT), Vacherie
Dome (LA), Richton Dome (MS), and Deaf Smith (TX) sites (see references in Sections 5.3 and
5.5).
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3. WIPP had an extensive laboratory creep-testing program, which is reported for both salt and
anhydrite samples (see Section 5.6.3.1 on page 24).

4. The Avery Island salt dome site (see Section 5.3 on page 12) was a HLW salt research site that
had both heated and unheated accelerated borehole closure (corejacking) tests (1980-1983).

5. The MCC potash mine was an interim salt test bed, before the first exploratory WIPP shaft was
constructed in 1981 (see Section 5.4 on page 16). An in situ large-scale deformation test was
conducted to measure closure rates in an active mine with a high level of extraction (90%).

6. The WIPP site had extensive structural monitoring as part of the TSI testing plan (see Section
5.6.3 on page 23 and Figure 8).

a. The South Drift of the SPDV area was a key set of early closure measurements in a long
isolated drift at WIPP, these data showed numerical models under-predicted closure by a
factor of three.

b. Room D was a ventilation drift of the same dimensions as the heated Room B. This room
was mined first, and was therefore a where WIPP instrumentation and installation
methods were first tested.

c. Rooms Al, A2, and A3 were heated rooms that were extensively monitored for
differential creep closure. Early monitoring during the mining of Rooms Al and A3 from
the central Room A2 gave valuable information regarding mining effects on closure
(1985-1990).

d. Room B was heated at a higher rate than the A Rooms with similar instrumentation.
Quicker closure rates were observed due to increase temperatures. Comparisons between
closure rates observed in Rooms D and B have been made (1985-1989).

e. Room H was heated and extensively monitored for differential creep closure during its
long life (1986-1995).

f. Room G was a long straight drift monitored for closure, and had hydraulic fracturing tests
performed to determine principal stress directions.

g. The Air-Intake Shaft (Shaft V) was monitored for closure soon after being mined with an
up-ream miner (1988). These early closure measurements were invaluable for
understanding creep closure of vertical salt boreholes.

h. The 8 heated RH canisters in Room T were placed in horizontal boreholes in the walls
and were monitored for closure.

i. Room Q was monitored for vertical and horizontal closure as well as transient mining
effects. This room provided a unique dataset, since it was rapidly constructed with a
tunnel boring machine and did not have stress-concentrating corners.

j. The pillar between rooms C1 and C2 contained the intermediate-scale borehole test,
which provided data regarding creep closure of rooms at approximately 1/10 scale the
scale of most WIPP drifts (1989).

7. The German Gorleben research repository (see Section 5.7.1 on page 56) was monitored for
closure during its active period as a research facility.

8. The Asse Il repository in Germany operated a large brine-inflow test (see Section 5.7.2 on page

58). Room closure was monitored during the test (1983-1987).

6.4 Crushed Salt Backfill Tests

These tests either tested crushed salt backfill or used it to backfill around heaters.

1.

2.

The Lyons, Kansas, Project Salt Vault site (see Section 5.2 on page 10) was a HLW disposal
demonstration that had several heater tests (1965-1967). The two 10.5-kW heated salt tests used
crushed salt backfill.

The Avery Island salt dome site (see Section 5.3 on page 12) was a HLW salt research site that
used crushed salt in heater test Site C (1978-1983).
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9. The MCC potash mine was an interim salt test bed, before the first exploratory WIPP shaft was
constructed in 1981 (see Section 5.4 on page 16). Crushed salt backfill was used in the six Waste
Package Materials tests.

3. The WIPP WPP test program used crushed salt in several tests (see Section 5.6.4 on page 37).

a. The DHLW WPP tests used crushed salt backfill around heaters in vertical boreholes in
Rooms Al and B.

b. The TRU WPP tests in Room J operated in or next to a brine pool under elevated
temperatures (40°C), resulting in high humidity. Salt backfill was placed over TRU CH
drums, allowing the brine from the pool to wick up into the backfill.

c. The MHT WPP test in Room J used samples placed in 50 heated boreholes in the floor.
Initially, most of the boreholes were filled with brine (a few only used crushed salt).
After 5 years of testing several of the boreholes had become encrusted with salt from
evaporation of water from the brine.

d. The TRU WPP CH drum tests in Room T were under normal WIPP conditions, including
a backfill experiment that was half crushed salt. This experiment was not retrieved and
remains in the WIPP underground.

e. The TRU WPP RH package tests in Room T used various backfills (including crushed
salt) around the heated RH containers in horizontal boreholes in the wall. This
experiment was not retrieved and remains in the WIPP underground.

4. The WIPP PSP performed several laboratory and in situ studies on crushed salt reconsolidation
(see Section 5.6.5.1 on page 46), including the development and refinement of a constitutive
model for crushed salt reconsolidation.

5. The Asse Il repository in Germany has carried out investigation into the disposal of heat-
generating waste in salt (see Section 5.7.2 on page 58). The TSDE experiment emplaced six large
heated disposal casks in two drifts, backfilling the drifts around the casks with crushed salt. After
9 years of heating, the follow-up BAMBUS Il experiment excavated 2 heaters, analyzing samples
of the reconsolidated crushed salt in the laboratory.

7 Consulting In Situ Test Leads and Employees

SNL has contracted with both existing and former employees who had experience with underground in
situ testing. This consultation was done to confirm the understanding of project history, to provide a level
of oversight, and to review project summaries included in this report. Due to time constraints this interim
report has not been formally reviewed in its final form by the consultants, although we have obtained
feedback on parts of the text. The consultants will review the final fiscal year 2013 report.

SNL consulted with four former SNL employees who were Principal Investigators on WIPP underground
in situ testing. Rudy Matalucci was the underground test coordinator. John Stormont was the lead for the
PSP. Darrell Munson was the principal for the TSI tests. Marty Molecke was in charge of TRU and
DHLW WPP testing, and in situ testing in the MCC potash mine.

Rudy Matalucci, Darrell Munson, and John Stormont traveled to the SNL Carlsbad office June 26 & 27,
2012. They presented to an audience of SNL, LANL, and DOE employees regarding the TSI and PSP
they carried out on salt at WIPP from the mid 1970’s to the mid 1990’s. Similarly Marty Molecke
traveled to Carlsbad on August 16 and 17, 2012 and presented a summary of the DHLW and TRU WPP
tests he led during a similar time period at WIPP to a similar audience.

Wes DeYonge is a current RE/SPEC employee who was involved in the instrumentation and execution of
most WIPP in situ thermal/structural interactions tests and in situ tests at Avery Island, Louisiana. Wes
provided personal photographs he took of operations at Avery Island, and he provided consultation on
both WIPP and Avery Island testing.
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8 Conclusions

Existing salt research has been summarized in this interim report. This report is the product of several
months of intensive report review by the authors. Although we have tried to discuss all tests that we felt
were relevant to the disposal of heat-generating waste in salt, the choice to include or leave out a
particular test is subjective. In the final report we will fix any omissions, add hyperlinks to reports, and
add more quantitative summary material including plots of results and a detailed graphical timeline of salt
research.
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SITED Implementation

This appendix describes the construction of SITED, as a specific implementation of the Refbase
bibliographic database. SITED consists of a collection of PHP and shell scripts which interact with the
database to generates hypertext markup language (HTML) pages dynamically. HTML pages are viewed
using a web browser. Pages include forms and buttons that allow the user to request information from the
database and submit new information to the database. Figure 32 illustrates the relation between the user,
the database, and the software components of SITED. The SITED server uses the “Linux, Apache,
MySQL & PHP” (LAMP) open-source software bundle to serve SITED to end users through its web
interface, specifically the “XAMPP for Linux” distribution.

I
|
|
i
Web browser request Apache HTTP server
|
(e.g. Internet Explorer, -
Firefox, Chrome) TeaRuiss
Internet
PHP CGI language

i
i
I
i MySQL database
I
I

client i SERVER Refbase Bibliographic Database

side I side

| CentOS Linux operating system

Figure 32. Diagram of SITED LAMP software bundle

B-1. Database: MySQL

The SITED MySQL database is the actual store of references and associated metadata. MySQL is an
open-source relational database management system, an implementation of the Standard Query Language
(SQL) relational database language. SITED uses a modern version of MySQL (version 5.0). The SITED
database includes 16 tables, listed in Table 2, specified by the Refbase distribution. The primary table that
stores the active references is the refs table.
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Table 2. Tables in SITED refbase database

SITED Table Description
auth authorized usernames and passwords
references which are deleted from the refs table through the SITED
deleted interface are moved to this table
depends high-level software dependencies
formats importing and exporting formats (e.g., MODS XML, Bibtex, EndNote)
languages list of which interface languages are used (e.g., English, German)
gueries list of saved queries
refs references (main database table)
styles citation styles which can be used (e.g., MLA, Chicago)
types entry types (e.g., Report, Thesis, Map, Journal Article)
users user metadata (e.g., email, affiliation)
user_data,

user_formats,
user_options,
user_styles, user_types

user-specified information

Typically the user does not interface direction with the MySQL database. The SITED interface creates
SQL queries from input and selections the user makes in their web browser. The results of these queries
are used to populate the search results pages, also displayed in the user’s browser. The SITED interface
does allow the user to view the SQL statement used to obtain data from the database, through the “your
query” link near the top of the search results page. SQL SELECT queries can also be specified directly
through the “SQL search” option at the bottom of the home page. SQL queries that change the database
(e.g., INSERT, UPDATE, and DELETE) are not possible through the SITED interface.

The MySQL database also can be accessed, browsed, and modified through a phpMyAdmin interface
(version 3.4). It is password protected, and not available to normal users. It is an “expert user” interface
that allows records to be modified in ways not accommodated through the Refbase SITED interface. Any
valid SQL command can be executed through this interface. This is the most general and flexible way to
import records to SITED in bulk. The phpMyAdmin interface allows a minor amount of graphical editing
of the database using a PHP-based tabular interface.

B-2. Common Gateway Interface Language: PHP

The Common Gateway Interface (CGlI) is a standard process for generating web pages dynamically. PHP
is the CGlI scripting language used by SITED as a “hypertext pre-processor” to create HTML pages
dynamically, based upon interactions with the user and database. PHP interacts directly with the MySQL
database, creating HTML pages based upon database content, and performing database queries based on
user interaction with HTML forms. The PHP code is run on the server and the user never directly
interacts with it (see Figure 32). SITED uses a modern version of PHP (version 5.4).

B-3.  Webserver Application: Apache

The Apache webserver is the program that listens to the SITED web address, and delivers the HTML
pages generated on the server using the PHP scripts that query the MySQL database (see Figure 32).
SITED uses a modern version of Apache (version 2.2), an industry standard Hypertext Transport Protocol
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(HTTP) server. An internal SNL requirement for externally visible webpages requires all SITED pages to
be served as encrypted HTTP (https). SITED uses OpenSSL (version 1.0) to handle authentication and
encryption for Apache.

B-4.  Server Operating System: Linux

Linux is well suited for use in server settings and is an industry standard for HTTP/database/PHP servers.
The database, CGI software, and HTTP server all run under the CentOS operating system (see blue box in
Figure 32). The PDF, text, and data files linked from SITED entries reside in the file system of the SITED
server. The SITED server runs the CentOS 6 operating system. CentOS is an open-source Linux
distribution based on Enterprise Red Hat Linux. The operating system used by the server has little impact
on the end user, but this choice was made based on the preference of the implementers, and to maximize
flexibility and maintainability of the system.

The database, the uploaded PDFs and data files, and the server software are backed up daily to a separate
computer in a scheduled process.

B-5. Client Web Browser

Mozilla Firefox, Google Chrome, and Microsoft Internet Explorer work with the SITED database
interface. Older versions of Internet Explorer (in Windows XP) appear to have problems with some very
long URLs generated when querying results from SITED, especially when navigating between query
results. Since Firefox and Chrome do not have this problem, and are freely available for most computers,
this problem is not a serious limitation.
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SITED Data Sources
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SITED Data Sources

SITED was initially populated using several sources of bibliographic information. Both references and
electronic copies of reports were downloaded from DOE and international (mostly German) sources. This
main dataset was augmented with references and documents from other sources during the review
process.

Several public, large, well-maintained, DOE-sponsored bibliographic databases already exist. We are
creating a new database to:
e combine widely available public content with hard-to-find content scanned specifically for
this project;
e include data from in situ and laboratory tests when available; and
e include a project-specific report ranking system.

C-1. DOE-Sponsored Databases

Available sources of both bibliographic information and electronic copies of documents (PDFs) were
ranked by their usefulness to the project, based on some initial queries and inspection of database contents
(see Figure 33). The potential sources considered were

WIPP Records Center databases;

SNL Albuquerque Technical Library database;

DOE Office of Scientific and Technical Information (OSTI) Information Bridge; and

DOE Energy Citations Database (ECD).

Several search engines are available to query these databases (e.g., SNL or LANL library searching tools,
Google Scholar, or commercial search engines), but only the primary source databases are discussed here.

SNL WIPP Records || ‘ SNL Tech Library ‘=
e &
I
I
1| DOEOSTIBridge || =
I =]
: é s »4 Commercial DB ‘
I
| DOE ECD B ;5|
: N als Type of Download/Query
! Subsequent \‘ Zf —— Programmatic
g Report Reviewing = = = Manual
b _\_Rclatcd Queries ,‘ Y
! a ~ SALTINVESTIGATIONS TECHNICAL EXPANSIVE DATABASE
E ~ ﬁ Tz C— f
X _Q

Figure 33. SITED data sources

The presence of electronic (PDF) copies of reports was an important criterion for databases that feed
SITED. Another important criterion was the ability to programmatically query databases and readily
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manipulate their output. This allowed over 10,000 records to be queried and imported (also removing
duplicates) in just a few weeks’ time.

C-1.1 WIPP Records Centers

In Carlsbad, NM, there are three main WIPP-related records centers. They are maintained by the DOE
Carlsbad Field Office, the WIPP site contractor (originally Westinghouse, now Washington TRU
Solutions), and the SNL Carlsbad Programs Group. The DOE and site contractor records centers do not
have electronically accessible or programmatically controlled interfaces, electronic copies of reports, or
much material relevant to the SRDI project goals that is not also contained in the SNL WIPP records
center.

The SNL WIPP records center includes paper copies of nearly all reports related to WIPP (both TRU and
DHLW), including many of the references of WIPP reports. Additionally, the WIPP records center
includes raw electronic media with data, copies of memos, draft copies of reports, field notebooks, maps,
photographs, and other miscellaneous salt- and WIPP-related information.

The electronic database used to organize the SNL WIPP records center has a web-based interface. Access
to the database requires an SNL intranet password and account permission from the SNL records center
database manager. Records cannot be queried programmatically from the WIPP records center and they
can only be extracted in bulk by creating a table report from the results of a manually entered query, then
performing a copy/paste from this table into a spreadsheet. The bibliographic entries in the database
include author, title, some records-center specific data, and a unique ERMS identifier.

All three Carlsbad WIPP records centers store information redundantly on shelves (multiple physically
separate locations) and these records are viewable in person, but most information must be obtained by
scanning paper copies on demand.

C-1.2 SNL Albugquerque Technical Library Database

The SNL Technical Library database includes entries for all SNL-generated reports that have a “SAND”
number, including “suffixed” SAND numbers (e.g., ‘a’=abstract, ‘c’=conference, ‘r’=revision, and
‘i’=journal), and external consultant reports submitted to SNL. SAND numbers are assigned to reports
that go through the SNL corporate review process. Memaos, test plans, and many things in the WIPP
Records Center do not exist in the SNL Tech Library, since they were never formally reviewed. The Tech
Library also has some general reference material and reports from other laboratories, when the report has
an SNL co-author.

The SNL Tech Library has a web-based interface that includes records found at several physical locations
(SNL tech library, Nuclear Waste Management Library, and the WIPP Records Center) that is only
accessible from inside the SNL intranet. A large number of the documents in the Tech Library have PDF
documents associated with them. Most SAND reports since the mid 1990’s are available for download
through the SNL intranet.

The SNL Tech Library does not have an interface that allows programmatic database queries by non-
librarians, but Amy Rein, an SNL reference librarian, provided the results in an ASCII report-based
format upon request. This output was configured for import to SITED, and available PDFs were
downloaded through use of several text-processing Python scripts.

C-1.3 DOE OSTI Information Bridge Database

The DOE Office of Science’s Office of Scientific and Technical Information (OSTI) Information Bridge
(www.osti.gov/bridge/) is an online database of DOE-sponsored research, including all official
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reports from national laboratories, DOE site contractors, and universities working under DOE contracts.
From SNL, OSTI Information Bridge has nearly all non-suffixed SAND reports, and some of the abstract
and conference suffixed SAND reports (‘a’ and ‘c’). This database was the main source for non-SNL
reports. All references in the OSTI Information Bridge have PDF documents available for download
(although many PDFs from the 1970’s are poor-quality scans), and full-text search is available across all
content.

The database can be programmatically queried, following their published guidelines
(www.osti.gov/XMLDataServicesManual.PDF). The OSTI Information Bridge servers deliver
XML documents based upon configurable queries and simple rules. Python text-processing scripts were
used to format the records for import to SITED and download available PDFs.

C-1.4 DOE Energy Citations Database

The DOE Office of Science Energy Citations Database (ECD) (www.osti.gov/energycitations/)
is an online database of DOE-sponsored work, more focused on energy-related topics than the DOE OSTI
Information Bridge. All entries in the ECD have abstracts and many have PDFs available (mostly the
entries that are common with the OSTI Information Bridge). This database was not programmatically
queried for content to add to SITED, but was checked manually when an abstract or bibliographic
information was needed during the review process (e.g., details regarding a conference or abstracts).

C-2. Commercial databases

Los Alamos National Laboratory (LANL) used its subscription to the Thomson Reuters Web of
Knowledge®™ through its research library (int.lanl.gov/library/) to query the following databases:
Web of Science® (sciences, social sciences, arts, and humanities);

BIOSIS® (life sciences and biomedical research);

Inspec® (physics, nuclear engineering and geophysics);

Journal Citation Reports® (sciences, physics, nuclear science and technology);
Engineering Index® (engineering);

SciSearch® (Thompson Reuters) (scientific and technical journals);

Thompson Reuters Conference Proceedings (proceedings papers at international and
technical conferences and covers the same disciplines as SciSearch but limits its contents to
conference literature); and

e Social SciSearch® (social sciences literature).

These databases were queried through the LANL internal web-based interface and the results were
imported into SITED. The majority of references only contained basic bibliographic information and an
associated abstract since they are mainly copyrighted content (i.e., scientific journals, proceeding, and
conferences). When the full text of these records is needed, the user should obtain the document of
interest directly from the publisher, through their institutional or personal subscription.

C-3. Project-Specific Bibliographies

When project-specific bibliographies were available, they were added to SITED. A keyword in SITED,
under “Report Type” is used to flag bibliographies (see Appendix D). For the WIPP Project, the
bibliography by Powers & Martin (1993; SAND92-7277) was an invaluable resource; it contains
summaries for 941 reports, including many hard-to-find early reports and 43 annotations. All entries in
this bibliography were checked against SITED, and abstracts were added for many old reports from this
source. Aside from the index and cross-referencing, all the content in Powers & Martin is included in
SITED.
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Report Review Procedure
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Report Review Procedure

Queries for SRDI-related reports were made from the SNL Technical Library, the DOE OSTI Information
Bridge, and the commercial databases discussed in Appendix C. Once all the entries were in a common
tabular format for importing into SITED, the database was populated with records in bulk to the SITED
server using the PHPMyAdmin interface (see Figure 33). PDF documents were uploaded in bult to
SITED using secure copy (scp) from the computer where they were programmatically downloaded from
the original sources.

After SITED was initially populated with bibliographic information from the databases, the reports were
reviewed and summarized. When a report was needed that was not available electronically from online
sources, it was scanned from a hard copy in the SNL WIPP records center, the SNL Technical library, or
the SNL Nuclear Waste Management Library. Over 100 1970°s and 1980’s reports and test plans were
added to the database this way.

The reviewing procedure was iterative, since the last step of the report review was to check the
bibliography for further reports, which was a key way to finds more reports. The process began with a
search on a sub-topic, author, or keyword (e.g., “creep”, “Room A”, or “Munson”). The database has
thousands of entries, more than could be reviewed in a few weeks, but the report searching, reviewing,
and adding loop was quite fruitful in identifying key reports and data sources.

1) Skim Report: When a paper or PDF report copy was available, the reviewer read the abstract
and conclusions. This level of review allowed confirmation that the report was topical to the
interests of SRDI, and an indication of what subjects it covered.

2) Correct/Update Bibliographic Information: Information in SITED was checked for
correctness and completeness against the original report. Often conference details were
entered, which were not in the database or were only in the “notes” field as a comment.

3) Check Report Relevance to SRDI Project: If a report was not relevant to the SRDI project
goals, the review process was finished at this step. Reports that were even marginally germane
to SRDI continued with the following steps:

a) Read report more thoroughly (taking notes when appropriate).

b) When a PDF was missing or very poor quality, a quality PDF copy of the report was
uploaded to SITED or the report was added to the list “to be scanned” by library personnel.

c) Copied the abstract from the PDF into the abstract field of SITED, to increase SITED search
utility. If the scanned PDF report did not have a text layer, optical character recognition was
used to add this information to the PDF before uploading.

d) Copied keywords from PDF or manually add any non-SRDI keywords to the keywords field
of SITED to increase search utility.

e) Picked and ranked relevant SRDI-specific keywords (see Table 3 to illustrate logical

grouping.).

Zero is the default value for all keyword fields, meaning “not applicable” or unreviewed. Five is the
highest ranking for a subject, and was used when a report is essential reading related to that topic. Other
numeric values are interpolated between the extremes of not applicable and very important. Although the
rating system is somewhat subjective, it provided a degree of quantification beyond a binary “yes/no”
system. The references that were ranked highly for specific keywords are listed in Section 6, beginning on
page 65. Keywords are arranged in columns in Table 3 for organization.
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Table 3. SITED keyword organization
timing location/scale report type topic specific features waste
pre-test laboratory summary salt creep anhydrite layers DHLW
in test in situ data report geophysics argillaceous layers | TRU
post-test | modeling test plan heated salt disturbed rock zone
regulatory bibliography brine chemistry backfill
field (non- benchmark waste packages crushed salt
underground)
QA geology seals
gas flow
brine flow
mining effects
instrumentation
shaft

5) Checked and recorded if tabular data or program source code were listed in the report or
elsewhere (e.g., appendices or in the records center).

6) Wrote 1-2 sentences about report in notes field, especially capturing any information, features,
or keywords not in the abstract or keywords fields to improve SITED search functionality.

7) Checked the document references entries against SITED. To reduce required effort, this was
typically limited to cases where a document scored five for one or more SRDI keywords. Added
relevant documents listed in report bibliography to SITED, or added to the list “to be found and
scanned”.

D-1. Find and Review Electronic Data

The process of finding, accessing, copying, scanning, and annotating electronic data relevant to SRDI has
been deferred until fiscal year 2013. Data include tables and listings of creep closure, temperature, stress,
corrosion, pressure, and brine inflow observations collected during both in situ and laboratory salt
investigations.

The process of creating SITED, bringing it online, and making it visible outside the SNL intranet took
approximately two months. The process of populating the database, reviewing reports, and talking with
former WIPP PIs has revealed where data should be found, but obtaining the data will require further
effort. The proposed procedure is as follows:

1. For electronic media:

1.1. Find media at WIPP records center, SNL library, or other external sources, if available (e.g.,
optical disks, magnetic tapes or zip drives).

1.2. Read electronic media using available computers and equipment at SNL. Reading magnetic
tapes, floppy disks, and other obsolete media may require acquiring specific hardware or
external contracts with data-recovery service companies.

2. For data only reported in tabular form (hard copy with no electronic media):

2.1. Scan best quality copies of printed data at a high resolution;

2.2. Use optical character recognition software to create electronic tables; or

2.3. When critical data can only be found in printed charts and graphs, data points will be
digitized to re-create the original data.

3. Copy electronic data to SITED database server for central archiving.
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4. Create short description assessing each dataset that includes:
4.1. Success/failure reading electronic media, and exact nature of original media;
4.2. Size of data read;
4.3. Number of files/directories read;
4.4. Names and types of files read (e.g., file format);
4.5. Identify programs/software needed to read data; and
4.6. Reports and data identified as “critical” to SRDI project will be further examined, plotted,
and described as warranted.
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