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Abstract

A semi-analytical solution is presented for the problem of flow in a system comprising an uncon-
fined aquifer and a confined aquifer that are separated by an aquitard. The unconfined aquifer is
pumped continuously at a constant rate from a well of infinitessimal radius that partially penetrates
its saturated thickness. The solution is termed semi-analytical since the exact solution is obtained in
the double Laplace-Hankel transform space and is then inverted numerically. The solution presented
here is more general than similar solutions obtained for confined aquifer flow as we do not adopt the
assumption of unidirectional flow in the confined aquifer (typically assumed to be horizontal) and the
aquitard (typically assumed to be vertical). Aquitard storage is not neglected.

Mathematical formulation

Assumptions

i. Flow in the unsaturated zone above the unconfined aquifer can be neglected

ii. Flow is radially symmetric

iii. The confined aquifer is bounded from below by a no-flow boundary

iv. The coordinate axes are parallel to the principal directions of hydraulic conductivity

Dimensionless Governing Flow Equation

∂sD,i

∂tD
=

α
(i)
D,r

rD

∂

∂rD

(

rD
∂sD,i

∂rD

)

+ α
(i)
D,z

∂2sD,i

∂z2
D

(1)

Initial and far-field conditions

sD,i(rD, zD, 0) = lim
rD→∞

sD,i(rD, zD, tD) = 0. (2)

Pumping well condition (at rD = 0)
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Linearized kinematic condition at water-table (i.e. at zD = 0)
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No-pumping at aquitard center
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No-flow across confined aquifer center and base (zD = −bD,3)
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The continuity conditions become at (a) unconfined aquifer-aquitard contact:

sD,1(rD,−1, tD) = sD,2(rD,−1, tD) (7)
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(b) confined aquifer-aquitard contact:

sD,2(rD,−bD,2, tD) = sD3(rD,−bD,2, tD) (9)
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List of Dimensionless Variables and Parameters

sD,i = si/Hc, zD = z/b1, rD = r/b1, tD = αrt/b
2
1, αr = Kr,1/Ss, lD = l/b1, dD = d/b1,

bD,2 = b2/b1,bD,3 = b3/b1, αD,Y = αY /αr, αY = b1Kz,1/SY , κ2 = Kz,2/Kz,1, κ3 = Kz,3/Kz,2,
Hc = Q/(4πb1Kr,1)
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Figure 1: Schematic of a 3-layered unconfined-aquitard-confined aquifer system.

Solution in Laplace-Hankel transform space

s∗D,1(a, zD, p) = u∗D(a, zD, p) + v∗D(a, zD, p) (11)

where
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and

v∗D(a, zD, p) = u∗D,−1 cosh [η1(1 + zD)] +
f (η1)h(a, zD, p)
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with
f (η1) = u∗D,0 − u∗D,−1 [ξ sinh(η1) + cosh(η1)] , (16)
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ξ = η1αD,Y /p, γ1 = η2K
(2)
D,z/η1, γ2 = η3K

(3)
D,z/η2, θ1 = η3(bD,3 − bD,2) + η2(bD,2 − 1),

θ2 = η3(bD,3 − bD,2) − η2(bD,2 − 1)

Numerical inversion of Laplace-Hankel transform

Inverse Laplace and Hankel transforms are obtained numerically.

i. The inverse Laplace transform was obtained using the method of (DHKS82), and;

ii. The inverse Hankel transform was obtained in a manner similar to that proposed by (Wie99)

Results
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Figure 2: Comparison of sD,1 (left) and sD,2 (right) with numerical solution obtained with
MODFLOW-2000.
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Figure 3: Log-log plot of point values of sD,1 vs. tD for different values of zD (left) and bD,2
(right).
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Figure 4: Log-log plot of point values of sD,1 vs. tD (left) and sD,2 vs. tD (right) for different
rD.

Summary

i. Leakage leads to significant departure from behavior predicted by solution for no leakage

ii. Early time departure due to leakage from aquitard storage

iii. Late time departure due to conveyance of fluid from the far reaches of aquitard and confined
aquifer to pumping well
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