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Ex 1: Leaky point source example
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Ex 2: Delayed yield point source example
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Ex 3. Extended Darcy’s Law

 Darcy’s Law from N-S eqns ( relaxation parameter 7 )

oq
_ _ (v 22
q (V +T@t>




Ex 3. Extended Darcy’s Law

 Darcy’s Law from N-S eqns ( relaxation parameter 7 )

oq
_ _ (v 22
q (V +T@t>

« take L, solve for q: PDE becomes

V0 = é [p—I—TpQ] P




Ex 3. Extended Darcy’s Law

 Darcy’s Law from N-S eqns ( relaxation parameter 7 )

oq
N I vZi I
q (V +T@t>

« take L, solve for q: PDE becomes

1

Vip = — [p—I—TpQ] P
Qv

effects of confined storage and “inertia”

-pg



Ex 3. Extended Darcy’s Law

 Darcy’s Law from N-S eqns ( relaxation parameter 7 )

oq
N I vZi I
q (V +T@t>

« take L, solve for q: PDE becomes

V0 = é [p—I—TpQ] P

effects of confined storage and “inertia”

1 [O0D 0°D
P = — :
v o | Ot B Ot?




Ex 3. Time drawdown (inertia)




Ex 3. Distance drawdown (inertia)

10




Conclusions

« LT-AEM extends AEM to diffusion

-p. 12



Conclusions

« LT-AEM extends AEM to diffusion
. £ + numerical £~ handles source terms accurately

-p. 12



Conclusions

« LT-AEM extends AEM to diffusion
. £ + numerical £~ handles source terms accurately
 Point and line sources work equally well

-p. 12



Conclusions

« LT-AEM extends AEM to diffusion

. £ + numerical £~ handles source terms accurately
 Point and line sources work equally well

o Circles + ellipses of different properties & source terms

-p. 12



Conclusions

« LT-AEM extends AEM to diffusion

. £ + numerical £~ handles source terms accurately
 Point and line sources work equally well

o Circles + ellipses of different properties & source terms

. LT-AEM extends AEM to aquifer test analysis
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