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Ĝ +
p

α

}

Φ̄

source transient
• If G is linear in Φ̄, lump with transient effects



- p. 4

Helmholtz equation

• Governing LT-AEM PDE with source

∇2Φ̄ =
{
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• use L/L−1 methods & tools for sources
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Ex 1: Leaky point source example
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Ex 2: Delayed yield point source example
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Ex 3: Time drawdown (inertia)
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Ex 3: Distance drawdown (inertia)

10-3

10-2

10-1

100

101

10-2 10-1 100

s D

r

τ=0.1

τ=0.01

τ=10-3

Theis



- p. 12

Conclusions

• LT-AEM extends AEM to diffusion



- p. 12

Conclusions

• LT-AEM extends AEM to diffusion
• L + numerical L−1 handles source terms accurately



- p. 12

Conclusions

• LT-AEM extends AEM to diffusion
• L + numerical L−1 handles source terms accurately
• Point and line sources work equally well



- p. 12

Conclusions

• LT-AEM extends AEM to diffusion
• L + numerical L−1 handles source terms accurately
• Point and line sources work equally well
• Circles + ellipses of different properties & source terms



- p. 12

Conclusions

• LT-AEM extends AEM to diffusion
• L + numerical L−1 handles source terms accurately
• Point and line sources work equally well
• Circles + ellipses of different properties & source terms
• LT-AEM extends AEM to aquifer test analysis
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Discontinuous leaky layers
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