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The hydrology and transport characteristics of the Culebra Dolomite Member of the Permian Rustler For-
mation have been extensively studied due to this unit’s role as a potential long-term radionuclide transport
pathway from the Waste Isolation Pilot Plant (WIPP) to the accessible environment. Hundreds of hydraulic
tests and several large-scale tracer tests have been conducted in the Culebra in the vicinity of the WIPP.
The tracer tests have revealed that the multiple scales of porosity observed in the Culebra (Figure 1) lead
to transport breakthrough concentration profiles that cannot be adequately simulated using single-rate or
double-porosity models [Haggerty et al., 2001].
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Fig 1. Culebra Dolomite porosity types

The long-tail breakthrough curves in field-scale
Culebra tracer tests have been confirmed through
two large-scale tracer tests in the mid 1990’s [Hag-
gerty et al., 2000]. Alternatively, it has been
hypothesized that parameter heterogeneity alone
could be used to explain long-tail breakthroughs
observed [Altman et al., 2002], but the multirate
model is superior in its ability to recreate tracer
breakthrough data at the field scale.
Large horizontal Culebra cores (see photographs
in Figure 2) were collected to perform controlled
laboratory radionuclide tracer tests [Lucero et al.,
1998].

The results from these tests were originally analyzed using only single- and double-porosity models; the
authors use of single-porosity models for core-scale transport were at variance with the use of multirate
transport models to analyze field-scale data.

Core-Scale Transport Tests

In this work, we have re-interpreted the column-scale tracer tests using a modified form of a multirate
transport model, which was also used at the field scale. We conclude that the multirate model yields
superior fits to the observed core-scale breakthrough data; our use of the multirate model is in line with
that used previously to interpret field-scale data.

Fig 2. 50.9-cm core with vuggy porosity, fractures, and pore-filling calcite; inch grid in foreground.
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Fig 3. Breakthrough data for column study; vertical lines are 1 pore volume based on total porosity
(φtotal) of 0.14. cinj is the injectate concentration, while c0 is the initial background concentration.

Multirate Solute Transport Model

The multirate mass transfer model conceives of the transport domain as two overlapping continua, the
mobile (advective or fracture porosity) and immobile (diffusion dominated matrix porosity) zones. Mass
exchange between these two domains is governed by a rate-transfer coefficient that is a random variable.
Transport of a sorbing radionuclide in the mobile domain is governed by the one-dimensional transport
equation [Haggerty and Gorelick, 1995]
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where c and cim are mobile- and immobile-phase solute concentrations [M L−3], ω is the first-order mass
transfer rate coefficient [T−1] as a continuous random variable, β(ω) = βTp(ω) is the point capacity ratio
of the rock matrix [T], βT = φimRim/φmRm is the total capacity ratio of the rock matrix, p(ω) is the
distribution function of ω [T], DR = D/Rm, D is the dispersion coefficient [L2 T−1], vR = v/Rm, v is
the average linear velocity [L T−1], φm and φim are the mobile- and immobile-domain porosities, Rm and
Rim are the mobile- and immobile-domain retardation factors, and λ is the first-order radioactive decay

constant [T−1]. Transport of a sorbing solute in one-dimension in the immobile zone is governed by
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where ω = 2γDm/(Rimb
2) is the mass transfer rate coefficient, Dm is the free-water diffusion coefficient, b

is the block-length in the immobile domain, 〈〉 indicates an averaged quantity, and γ is a proportionality
constant. We use the lognormal distribution for ωD = ωL/vR (the Damköhler-I number), where L is
column length and the distribution is given by
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where µ and σ are the mean and standard deviation of log(ωD).

Simulation of Breakthrough Data

The measured breakthrough data were fit with multirate, single-porosity, and double-porosity models using
PEST [Doherty, 2009]. Figure 4 shows the fits with both linear (a) or log-scale (b) concentrations.
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Fig. 4 Model fit to Culebra core breakthrough data for 22Na tests.
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Fig. 5 PEST-computed parameter sensitivities through time. Qx is the test flowrate.

Figure 5 shows the relative sensitivities of estimated parameters during the tests for a short-duration (a) and
a long-duration (b) 22Na test. These figures show that the largest sensitivities are associated with changes
in input concentration (increases or decreases). Figure 5 also shows low-flow (c) and a high-flow (d) 232U
tests. The sensitivity of the immobile-domain retardation factor (Rim) and multirate model distribution
parameters (µ and σ) are high in (c) and relatively low in (d), where the mobile-domain retardation factor
(Rm) has high sensitivity. This dependence of sensitivities on flowrates is related to the proportionality
between mass transfer and advective transport (i.e., the dimensionless Damköhler-I number).

The Markov-chain Monte Carlo (MCMC) optimization algorithm DREAM [Vrugt et al., 2009] was used
to estimate the posterior probability distributions for two long-pulse 22Na tests (B4 and B8 – see Figure
4 for data). The single marginal distributions are shown in Figure 6; the well-defined nearly-Gaussian
distributions indicate that all 7 parameters are estimable at the same time from the breakthrough data.
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Fig. 6 DREAM-computed results for 22Na-test B8. Posterior parameter distributions (left) and
evolution of chains showing convergence at about 10,000 iterations per chain (right).

The two-parameter marginal distributions for B4 and B8 are shown in Figure 7; most parameters are at
least slightly correlated. The mobile-domain porosity φm and the dispersivity αL are highly correlated
(narrow linear scatterplot blob), while the length of the injection pulse tinj and the initial concentration c0
are nearly uncorrelated (nearly spherical scatterplot blob). In general, test B8 (flow rate 0.5 ml/min) has
less-correlated parameters than B4 (0.1 ml/min), which conceptually agrees with the changes in parameter
sensitivity with flowrate observed in Figure 5.
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Fig. 7 DREAM-based two-parameter pairs of
posterior parameter estimates for both B4 and
B8. Diagonal shows same scaled marginal
posterior parameter distributions as in
Figure 6, while off-diagonals show
relationships between parameters

Table 1. Parameter estimates for models fit to
conservative tracer tests, some shown in Figure 4.

Test αL

Qx (mL/min) Model φm (cm) ωD µ σ
B1 3H Single 0.081 7.99

Double 0.073 4.83 0.735
0.1 Multi 0.060 2.98 -0.498 1.28
B2 22Na Single 0.065 7.30

Double 0.061 5.14 0.538
0.1 Multi 0.042 2.18 -1.22 1.98
B3 22Na Single 0.062 8.55

Double 0.058 6.04 0.395
0.1 Multi 0.037 2.03 -1.28 1.85
B4 22Na Single 0.065 17.5

Double 0.062 9.38 0.209
0.1 Multi 0.045 3.37 -1.73 1.80
B5 22Na Single 0.070 16.4

Double 0.069 10.7 0.229
0.05 Multi 0.051 5.72 -1.69 2.10
B7 22Na Single 0.071 14.3

Double 0.066 9.89 0.473
0.5 Multi 0.061 8.46 -0.921 0.831
B8 22Na Single 0.068 12.9

Double 0.065 7.01 0.289
0.5 Multi 0.047 3.01 -1.53 1.86

Table 1 shows that the multirate model produces more physically realistic dispersivity values (αL) for a
core-size problem ( 2cm), and mobile porosities (φm) are also consistently lower. The distribution pa-
rameters (µ and σ) for the multirate model are consistent between most of the 22Na tests (except B7).
The multirate model is more physically realistic than the single- or double-porosity model for the Culebra
Dolomite, based on field-scale testing. Reinterpretation of these core-scale data shows that this is not only
true at the field scale; multirate transport can be observed at the centimeter-scale as well as at the meter
scale in tracer tests performed at WIPP wells H-19 and H-11 [Meigs et al., 2000].
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