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ABSTRACT

The Laplace transform analytic element method (LT-AEM), applies the tradition-
ally steady-state analytic element method (AEM) to the Laplace-transformed diffu-
sion equation (Furman and Neuman, 2003). This strategy preserves the accuracy
and elegance of the AEM while extending the method to transient phenomena.
The approach taken here utilizes eigenfunction expansion to derive analytic solu-
tions to the modified Helmholtz equation, then back-transforms the LT-AEM re-
sults with a numerical inverse Laplace transform algorithm. The two-dimensional
elements derived here include the point, circle, line segment, ellipse, and infinite
line, corresponding to polar, elliptical and Cartesian coordinates. Each element is
derived for the simplest useful case, an impulse response due to a confined, tran-
sient, single-aquifer source. The extension of these elements to include effects due
to leaky, unconfined, multi-aquifer, wellbore storage, and inertia is shown for a few
simple elements (point and line), with ready extension to other elements. General
temporal behavior is achieved using convolution between these impulse and gen-
eral time functions; convolution allows the spatial and temporal components of an
element to be handled independently.

Comparisons are made between inverse Laplace transform algorithms; the ac-
celerated Fourier series approach of de Hoog et al. (1982) is found to be the most
appropriate for LT-AEM applications. An aquifer test application and synthetic ex-
amples are shown for several illustrative forward and parameter estimation simu-
lations to illustrate LT-AEM capabilities. Extension of LT-AEM to three-dimensional

flow and non-linear infiltration are discussed.
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Chapter 1

BACKGROUND

1.1 Motivation

Water is imperative to life. In places where surface water is ephemeral or contam-
inated, water supply either comes from groundwater or must be imported. The
majority of the Earth’s non-frozen fresh water is groundwater. To understand and
predict the movement of groundwater in the subsurface we rely on sparse mea-
surements of head and aquifer properties (wells are expensive and geophysics is
only indirectly related to the hydrologic problem), interpreted and extrapolated
using groundwater flow simulations.

Models are simplified representations of reality. Hydrologists utilize concep-
tual models (e.g. Bear, 1988, §4.5.1), analytic models (e.g. Bruggeman, 1999), nu-
merical models (e.g. Bear and Verruijt, 1987), and even physical-analog models
(e.g. Bear and Zaslavsky, 1968, §12). In reality, subsurface geology and hydrology
are heterogeneous, complex, and difficult to characterize (e.g. Neuman and Di Fed-
erico, 2003); we accept that our models will not capture every detail of reality.
For well-understood physical processes (e.g., porous media flow, heat conduction,
neutron diffusion, or elastic waves), we simulate an equation which is believed
to adequately describe observed behavior as a proxy for the actual physical pro-
cess. There are a few fundamental equations of mathematical physics which have
been studied extensively because they appear repeatedly (Laplace, diffusion, and
advection-dispersion equations). When a process is identified as being governed
by one of these equations, we can immediately adopt a large body of previously-
derived analytic results and numerical methods.

While it is always necessary to eventually justify equations and solutions with



16

observations, that is not being done here. We are focused on solving the governing
equations. Solving a diffusion problem produces a solution useful to hydrologists

or any field where diffusion is believed to describe the problem.

1.2 AEM introduction

The analytic element method (AEM) provides semi-analytic solutions to linear
porous media flow problems, through superposition of fundamental solutions (el-
ements) that represent physical entities in the hydraulic system. AEM has largely
been developed by Strack and his colleagues since the early 1980s; a historical
summary of AEM publications and contributors is recounted by Kraemer (2007).
The first AEM application was a steady 2D system, with an infinitesimally-thick
clay layer between two aquifers (Strack and Haitjema, 1981a,b). Inhomogeneous
aquifer properties or area source terms were handled using polygons of line dou-
blets and dipoles, which created the jump in discharge potential (due to change
in aquifer properties) or stream-function required in the solution. The funda-
mental elements in this approach were derived using line and area integrals of
the 2D Green’s function for Laplace’s equation (—1Inr), over the desired curve or
area (Strack, 1989). This early AEM approach came out of Strack’s work with the
boundary element method (BEM) (Strack and Haitjema, 1981a); it is very similar
to BEM in both philosophy and implementation.

Most AEM applications have been concerned with two-dimensional steady
groundwater flow (Laplace and Poisson equations), but AEM has been extended to
3D (e.g. Fitts, 1989, 1991), transient (discussed in next section), multi-aquifer (e.g.
Bakker and Strack, 2003; Bakker, 2006), electrical geophysical (Furman et al., 2002),
and linearized unsaturated (e.g. Warrick and Knight, 2002; Furman and Warrick,
2005) flow problems. Strack (1989; 1999; 2003) and Haitjema (1995) cover the tra-

ditional line integral approach in great detail. This technique is not used here, but
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it could be applied to derive additional types of LT-AEM elements, following the
analogies drawn by Duffin (1971) between Laplace’s equation and the LT-AEM
governing equation (introduced in §2.1).

The traditional AEM and the Laplace transform AEM (LT-AEM) described here
partially fill a gap in available modeling tools between the analytic solutions de-
rived for simple geometries (e.g., radially-symmetric flow to a well (Theis, 1935))
and distributed-parameter gridded models (e.g., finite element (Istok, 1989) or fi-
nite difference (McDonald and Harbaugh, 1988) methods). AEM and LT-AEM
provide flexibility and computational efficiency, while retaining the accuracy and
much of the elegance of an analytic solution.

AEM is not intended as a replacement for gridded models, but there are many
situations where AEM and LT-AEM are more appropriate than a finite difference
or finite element model. Often, due to lack of detailed information about the sub-
surface or interest in simplicity, the assumption of homogeneous aquifer proper-
ties is adequate. Applications of AEM include the EPA WhAEM?2000 software for
the federally-mandated wellhead protection program (Kraemer et al., 2007), NA-
GROM, the Dutch national groundwater model (de Lange, 2006), and numerous
smaller cases (Strack, 2003). In AEM models, the complexity of the problem is pro-
portional to the number of physical entities in the domain, rather than the grid
spacing. Hunt et al. (1998) and Kelson et al. (2002) demonstrate how AEM can be
used during the planning stage to improve complex gridded models. AEM and
LT-AEM make good learning tools, because the solution they compute is accurate
and efficient. Kraemer (2007) lists 8 steady-state AEM program implementations
freely available for use in academic settings.

Dagan et al. (2003), Fiori et al. (2003), and Jankovi¢ et al. (2003) have investi-
gated the use of steady AEM solutions for simulating flow through a large number
of non-intersecting elements to explore topics pertaining to random heterogeneity.

Because non-overlapping, non-intersecting convex elements (e.g., circles, spheres,
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spheroids) cannot tessellate a domain (there is an interconnected background be-
tween the elements), additional theoretical complications arise. They have illus-
trated that AEM solutions can be used to investigate randomly heterogeneous flow
problems.

An active area of research in the AEM community is extension of the method to
transient flow problems. AEM is well suited for boundary value problems defined
by the Laplace and Poisson equations; extensions to transient flow governed by

the diffusion equation, an initial value problem, have taken several directions.

1.2.1 Transient AEM

Haitjema and Strack (1985) were the first to attempt an extension of AEM to tran-
sient groundwater flow; their approach was discontinuous in time, using a grid to
simulate the effects of transient storage. The space discretization of this approach
offset the mesh-free benefit of AEM. Haitjema (1991) approximated transient in-
terface flow (e.g., between fresh and sea water) near a well with explicit time
marching between steady-state Poisson solutions, using vortex rings to represent
the interface. Zaadnoordijk (1988) and Zaadnoordijk and Strack (1993) took an ap-
proach that combined steady and transient elements, using area source elements
to approximate transient storage. The method had many restrictions, including
that there be no net transient withdrawal from the aquifer, requiring additional
non-physical elements to be placed at a large distance to cancel local transient ef-
fects. The point and line source elements derived in this approach accounted for
both time and space behavior, significantly increasing their complexity. Several
of the expressions they derived contained temporal convolution integrals, which
were looked up in tables or evaluated numerically. The different combinations
of space and time behaviors to be considered, quickly rises to an unmanageable

number. Due to these limitations, the approach was neither accurate nor straight-
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forward. Zaadnoordijk (1998) also explored the combination of both transient and
steady well solutions; he found this lead to complications on both theoretical and
implementation levels that were not easily resolved.

Bakker (2004c) used a temporal Fourier transform to modify the governing
equation. The Fourier transform allowed him to better apply the AEM, similar
to LT-AEM, but without some of the benefits which the Laplace transform brings
(see Appendix A for comparison of these transforms). He arrived at essentially the
same governing equation used here through a Fourier transform, but he restricted
the approach to periodic time behavior (a finite number of sinusoidal harmonics).
This, coupled with the assumption of no initial conditions, limited the method’s
application to oscillatory problems (e.g., seasonal fluctuations caused by a river).
Bakker (2004b) proposed using Fejér averaging to smooth oscillations that arose
when expanding discontinuous time behaviors. While this approach did smooth
the oscillatory behavior, it can be thought of as a re-implementation of a numer-
ical inverse Fourier or Laplace transform algorithm. In general, there exist more
efficient and accurate ways to sum potentially divergent Fourier series than Fejér
averaging (§D.2).

Most recently, Strack (2006) outlined an approximate AEM approach in which
localized transient, leaky, or non-constant material property local perturbation el-
ements are superimposed on a constant property, confined, steady background,
with transient effects approximated using finite differences. The full details of
Strack’s latest method have not yet been given, only an abstract of the approach is
provided.

Furman and Neuman (2003) first used AEM to solve the Laplace-transformed
transient flow problem; the transform converts the initial value problem into a
boundary value problem, where the time dependence is expressed through the
Laplace parameter. They illustrated the method for point and circular matching

elements. LT-AEM back-transforms the Laplace space solution into the time do-
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main using a numerical inverse Laplace transform algorithm. In contrast to the
Fourier transform approach of Bakker (2004c), the Laplace transform and its nu-
merical inverse removes the restriction of periodic time behavior and allows for

the incorporation of initial conditions (Kuhlman and Neuman, 2006).

1.2.2 Laplace-transform based methods

The Laplace transform is a commonly-used tool for developing both analytic and
numerical solutions to transient diffusion problems. When it is possible to ana-
lytically invert the transformed solution, a closed-form time-domain solution is
obtained. Working in the petroleum industry, van Everdingen and Hurst (1949)
were the first to methodically use the Laplace transform to find solutions for flow
in porous media. Carslaw and Jaeger (1959) utilized the Laplace transform ex-
tensively to find analytic solutions for numerous geometries in heat conduction
problems.

When analytic inversion of the Laplace-space solution is not possible, or if the
solution is too complicated to be of practical use, asymptotic solutions may be use-
ful. Hantush (1960) analytically developed the solution for the modified theory
of leaky aquifers in Laplace space, computing numerical results using asymptotic
expansions at early and late time. Sternberg (1969) approximated the inverse so-
lution for flow to a well within a circular inhomogeneity by neglecting what he
considered to be insignificant terms in the Laplace-space expression, allowing an
approximate analytic inversion. Both of these problems now are trivially solvable
using LT-AEM (with numerical inversion). Furman and Neuman (2003) showed
that the Sternberg’s approximations led to an inaccurate solution that produced in-
consistent results. We show how the leaky Hantush (1960) solution is easily solved
and extended to other sources using LT-AEM (see Chapter 4).

Moench and Ogata numerically inverted analytic Laplace-space solutions for
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radial dispersion (1981) and flow to a well under various aquifer conditions (1984)
using the Stehfest (1970) algorithm. Hemker and Maas (1987) numerically inverted
the transient multi-layer flow problem, comparing results using the numerical in-
version algorithms of Schapery (1962) and Stehfest (1970). Numerical approaches
were used instead of developing analytic or asymptotic solutions, the same route
taken here by the LT-AEM. Many semi-analytic solutions for simple geometries
have been developed in the hydrology literature, because of the flexibility gained
from utilizing numerical Laplace transform inversions, often in conjunction with
other integral transforms (e.g. Tartakovsky and Neuman, 2007; Malama et al., 2007,
2008).

The numerical inverse Laplace transform approach has been used to extend the
related BEM to transient diffusion problems (e.g. Liggett and Liu, 1983; Brebbia
et al., 1984; Davies and Crann, 2002). For transient groundwater flow Liggett and
Liu (1983, §10.1.2) inverted the transient perturbation of a solution from the cor-
responding steady solution (analogous to the approach taken recently by Strack
(2006) in the time domain), an inverse technique introduced by Schapery (1962).
Few Laplace-space BEM methods utilize inverse algorithms which require com-
plex values of the Laplace parameter, restricting the number of applicable inverse
algorithms, to the methods of Stehfest (1970) and Piessens (1972). Finlayson (1972,
p-56) indicates that Laplace transforms have been utilized in solving different types
of method of weighted residual solutions, since as early as 1955. In hydrology,
the Laplace transform has successfully been used with finite element solutions
by Sudicky and McLaren (1992) for simulation of advective-dispersive transport,
by Ye et al. (2004) for simulation of stochastic moment-based flow equations, and
by Morales-Casique and Neuman (2008) for stochastic moment-based advective-

dispersive transport.
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1.3 Dissertation overview

In Chapter 2, we introduce the governing equation (§ 2.1) and the fundamental
concepts that LT-AEM is based upon, including those of superposition (§ 2.2) and
convolution (§ 2.4). Separation of variables and eigenfunction expansion are used
to derive elements which satisfy the governing equation (§ 2.3). After deriving
the elements and combining them to solve more general problems with superpo-
sition and convolution, the desired boundary conditions must be enforced using
the AEM process of boundary matching (§ 2.5), which gives enough information
to finally solve the coefficient problem (§ 2.6). The head or flux is then calculated
in a straightforward manner from the known coefficients (§ 2.7).

Once the supporting concepts are introduced, specific LT-AEM 2D elements
are derived for circular (§ 3.1), elliptical (§ 3.2) and Cartesian (§ 3.3) coordinates.
Some discussion regarding the extension of the methods to 3D problems is out-
lined in § 3.4. As an extension of the elements just derived, general methods for
deriving distributed source terms are given (§ 4.1). In Chapter 4 several homoge-
neous source terms of interest to hydrologists are derived, including leaky (§ 4.2.1),
multi-layer (§ 4.2.2), unconfined (§ 4.2.3), and damped wave (§ 4.2.4) source terms.

Perhaps the most crucial component to the success of the LT-AEM, the inverse
Laplace transform algorithm, is introduced in Chapter 5. Several different algo-
rithms are outlined and compared, including the Post-Widder (§ 5.3.1), Schapery
(§ 5.3.2), Fourier series (§ 5.3.3), and Mobius transformation (§ 5.3.4) approaches.

Chapter 6 illustrates two inverse-modeling applications of LT-AEM. One to
interpret a two-well unconfined aquifer test near a river using PEST (Doherty,
2007). The second estimates the geometry associated with a synthetic problem
using SCEM-UA (Vrugt et al., 2003b).

Several appendices supplement the material presented above. General proper-

ties of the Laplace transform are given in Appendix A. The metric coefficients of
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the coordinate systems for which elements are derived in Chapter 3 are given in
Appendix B, along with example calculations regarding the calculation of the Jaco-
bian (§ B.2), which is required to project a vector quantity (in this case Darcy flux)
in one coordinate system onto a vector in another system. We present a discus-
sion on the relationship between LT-AEM and the method of weighted residuals
in Appendix C. Details regarding convergence of Fourier series and eigenfunction
expansions are given in Appendix D. The Mathieu function used for eigenfunction
expansion in elliptical coordinates are discussed in detail in Appendix E, since they
are typically unfamiliar.

The last appendix is an application of the eigenfunction expansion approach
used here in elliptical coordinates. In this application, we solve non-linear steady-

state infiltration into unsaturated soil from an elliptical cavity.
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Chapter 2
LT-AEM FOUNDATION

In this chapter the governing equation is derived and the fundamental principles
of convolution and superposition are introduced. We introduce the method of
eigenfunction expansion, which is used later to derive elements of various geome-
tries. Through examples, boundary matching is developed and we solve for the

coefficients using either a direct or iterative approach.

2.1 Governing equation

Transient, confined groundwater flow in an elastic aquifer is governed by the dif-
fusion equation; Jacob (1940) was the first to derive it from physical principles
in the hydrology literature. While non-linear porous media flow is associated
with variably-saturated conditions (e.g. Warrick, 2003, §6), gas flow (e.g. Milling-
ton, 1959), unconfined flow (e.g. Bear, 1988, §8), flow at high Reynolds numbers
(e.g. Nield and Bejan, 2006, §1.5), or flow associated with large transient changes
(e.g. Vasquez, 2007, §1.2.1), the linear diffusion equation is considered adequate
for most confined flow applications. Non-linear problems can often be approxi-
mated adequately by linearizing them. Warrick and Knight (2002, 2004), Furman
and Warrick (2005), and Appendix F use a set of non-linear transformations to
linearize and solve the non-linear steady-state Richards equation. The governing
partial differential equation (PDE) used here is

Oh(x, 1)

DEVZh(x, ) +bG(x,1) = bS,— =

2.1)

where x is a vector of general spatial coordinates, ¢ is time [T}, b is aquifer thick-

ness [L], h is hydraulic head [L], G is a volumetric source term [1/T], K is hydraulic
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conductivity [L/T], and S, is specific storage [1/L]. AEM problems are developed
in free space, and therefore they tacitly include the requirement that the solution
is bounded at infinity. Head, boundary conditions on specified curves, and source
terms are generally functions of both time and space, while the aquifer proper-
ties are assumed to be constant scalars. More generally, K is isotropic (a tensor),
but homogeneous anisotropic regions can be transformed into equivalent isotropic
ones (Bear and Dagan, 1965). Representing boundaries and inhomogeneities in
anisotropic domains presents additional complications for this type of transfor-
mation (Suribhatla, 2007), but the method is feasible for some simple coordinate
systems. The transformation will, for example, deform circles into ellipses, as men-
tioned in section 3.2.4.

Due to the superposition of different geometries in LT-AEM, it is not always
possible to simplify the overall problem into dimensionless quantities; fundamen-
tal dimensions of key parameters and variables are given in brackets. For two-
dimensional problems, unless otherwise stated, a unit aquifer thickness, b, is as-
sumed without loss of generality.

Girinskii (1946) and Strack (1976) established what is now the AEM tradition
of working with discharge potential [L?/T], ® = Khb + C, where C is an arbitrary
reference that we conveniently set to zero. Applying the Laplace transform (see

Appendix A) to (2.1), written in terms of ® with G = 0, gives
aV2b(x) = B(x)p — By (x), 22)

where o = K/S; is hydraulic diffusivity [L?/T], p is the complex transform param-
eter [T}, ® is the transformed discharge potential [L?], and @, is the initial value
of ®. Change in head from a zero initial condition is also equated with drawdown
(common in aquifer testing). To render (2.2) homogeneous, we set ®;, = 0, with-
out loss of generality. Non-zero initial conditions are introduced using impulse

area sources (Kuhlman and Neuman, 2006). This yields the homogeneous Yukawa
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(Duffin, 1971) or modified Helmholtz equation
V20(x) — k*®(x) = 0, (2.3)

where x? = p/a is analogous to the wave number used in physics (Graff, 1991,
§1.1.2); later the definition of x will be modified, due to the presence of distributed
source terms (Chapter 4).

LT-AEM elements can be developed by applying the Laplace transform (£) to
a known solution of (2.1), many of which can be found in the heat conduction
(e.g. Carslaw and Jaeger, 1959) or diffusion (e.g. Crank, 1975) literature. Equiva-
lently, solutions for (2.3) may be derived directly in Laplace space; the Yukawa or
modified Helmholtz equation appears frequently in seismic geophysics (e.g. Ben-
Menahem and Singh, 2000), elastics (e.g. Graff, 1991), acoustics (e.g. Morse and
Ingard, 1968), and physics (e.g. Duffin, 1971), as the space-dependent portion of
the solutions to both the wave and diffusion equations. Equation 2.3 degenerates
to the steady-state Laplace equation as x — 0, which corresponds to small Laplace
parameter and large time (see Appendix A). Since the final time-domain solution
is computed using a numerical inverse Laplace transform (LY, the elements de-
rived directly in Laplace space are not required to have known analytic inverses
(but the inverse must exist); the numerical approach only requires numerical val-

ues of the solution.

2.2 Superposition

Spatial superposition is one of the fundamental ideas upon which LT-AEM is built.
It is a consequence of the linearity of the boundary condition and governing equa-
tion; if the boundary conditions are homogeneous, superposition is simple. Com-
bining non-homogeneous differential equations (DE) and boundary conditions is

possible using superposition, but it requires keeping track of the net inhomoge-
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neous terms, so their sum still satisfies the DE and/or boundary condition (i.e.,
boundary matching).

If uy (x) and uy(x) are two solutions of a homogeneous linear DE, then c;u4 (x) +
coug(x), where ¢; and ¢, are arbitrary constants, is also a solution (Courant and

Hilbert, 1962, §5.1). More generally, any number of homogeneous solutions, u; (x),

us(x), ... with constants ¢y, ¢y, ... can be combined into a convergent series
o
v(x) =Y cnttn(x), (2.4)
n=1

where v(x) is then also a solution to the same DE with the same homogeneous
boundary conditions. This concept is used in eigenfunction expansion to build
up solutions for general problems from individual harmonics. For the standard
Sturm-Liouville problem (homogeneous boundary conditions specified at the ends
of a finite interval), u, (x) is an eigenfunction and the integer sum index correspond
to the eigenvalues (the eigenvalues can be mapped onto the integers). If the ho-
mogeneous solution u(x, ) instead depends on the continuous parameter /3, new

solutions can be composed using the more general form

v(x) = / (B)u(x, B) dB. 25)

The integral form of superposition is used in Sturm-Liouville problems over in-
finite intervals, where integer eigenvalues are insufficient to resolve an arbitrary
condition. In LT-AEM the integral superposition case is not carried out explicitly;
the integral is approximated numerically by a sum (i.e., only (2.4) is actually im-

plemented).

2.3 Element derivation using eigenfunction expansion

The method of eigenfunction expansion is used to derive LT-AEM elements in

Laplace space that are solutions to (2.3), following the general approach of Furman
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and Neuman (2003); see Appendix D for convergence properties and theoretical
implications of this approach. The eigenfunction expansion (EE) approach pro-
duces analytic solutions that can represent an arbitrary boundary condition along
certain non-intersecting constant coordinate curves. The governing Laplace-space
partial differential equation (PDE) involves 2 or 3 independent variables (depend-
ing on the dimension, D). EE leads to an exact solution to the PDE in certain coor-
dinate systems, comprised of the tensor product of the solutions to the component
ordinary differential equations (ODE) (Gustafson, 1999, §2.9.1), found through sep-
aration of variables. This is represented as

D

O (x) = [ " (x1). (26)

i=1

where ®*(z;) is a solution to the separated ODE for the coordinate z; related to
element k. For certain geometries, (2.3) can be separated into ODEs with solutions
in terms of a complete set of orthogonal eigenfunctions (i.e., special functions).

Completeness ensures that any smooth function can be represented exactly by
the infinite family of eigenfunctions (MacCluer, 2004, §11.3). Orthogonality is the
functional equivalent to perpendicularity of 3D vectors; each function is maximally
independent over the range of definition (MacCluer, 2004, §5.1). Orthogonality is

defined for the complex function ¢ and 7 as

b
/ On ()0} () day = O, (2.7)

where ¢ < z; < b, ¢ is a constant, §,,, is the Kronecker delta, and * indicates
complex conjugation. More generally, (2.7) can involve a weigh function, but for
the current applications this is always unity.

In EE one expands boundary conditions in eigenfunctions, then the solution is
computed everywhere else using the coefficients determined from the boundary

expansion. The second-order ODEs associated with finite boundaries encountered
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in this work have solutions of the form,

N—

,_.

ak (i) + U by(x)] + Ry, i=1,....D (2.8)

;:0
where ¢; and v; are the eigenfunctions associated with the j** eigenvalue and co-
ordinate, ;. afj and bfj are generalized Fourier series coefficients [L?] that must
be determined for element k. The residual, Ry, arises from truncating the infinite
expansion. In this case, the eigenvalues are the integers (j), because the domain
is finite. In cases where the domain size becomes infinite, the eigenfunctions will
become real numbers. When expanding a general function or boundary behavior,
the sum of all the eigenfunctions, corresponding to the spectrum of eigenvalues,
must be used (i.e., the form of (2.4)).

Upon recombination of the ODE solutions to form a solution to the PDE, prod-
ucts of coefficients are consolidated. For a two-dimensional problem this results

in

P

OF (21, m0) = > [ALg;(21) + Biapj(a1)] [€(w2) + G(w2)] + RY, (2.9)

J

I
o

where ¢ and v are the basis functions for z; and £ and ( are the basis functions
for x,. There are 2N coefficients to determine for element & (Af and B;?) and one
residual term.

(2.9) constitutes an exact expression for ®*(x), since R% — 0as N — oo, due to
the completeness of the eigenfunctions. Convergence is at least O(N~?2) for smooth
functions with continuous first derivatives (details in section D.2). The condition
of smoothness is not overly restrictive for PDEs arising from physical problems;
in cases where discontinuous functions must be expanded (e.g., intersecting ele-
ments), convergence will be degraded, but often the situation can be improved
with series transformation and acceleration techniques (Oleksy, 1996).

LT-AEM utilizes a two-step solution process. The first step solves for the co-

efficients of the eigenfunctions in (2.9) using collocation, based on a desired ar-
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rangement of elements, source terms, material properties, and the number and
spacing of collocation points (§2.6). The second step evaluates (2.9) for various
values of the independent variables, z;, using the known coefficients (§2.7). One
can evaluate the solution anywhere and analytically manipulate the solution (e.g.,
differentiate and integrate ®(x) for fluxes or streamfunction), a benefit of LT-AEM
over gridded solutions.

LT-AEM uses the concepts of active and passive elements. Passive elements
have specified strength (A;? and B]’? are known before run-time), while active ele-
ments have total head or flux specified so that the coefficients of different elements

depend on each other.

2.3.1 Geometric considerations

The geometry of the problem, the coordinate system used to solve the problem,
and the behavior of the eigenfunctions that arise from separation of variables are
interrelated. All coordinate systems in which (2.3) is separable can be derived
from Cartesian coordinates using conformal mapping (Morse and Feshbach, 1953,
p-499); the geometry can therefore also be related to the mapping function used
to derive the working coordinate system. Table 2.1 categorizes elements related to
Helmholtz-separable 2D coordinates where EE can be performed. 3D Helmholtz-
separable coordinates are considered in section 3.4. Elliptical coordinates are the
most general 2D coordinates; polar, parabolic, and Cartesian coordinates can be
obtained by moving the elliptical foci together or moving one or both of the foci
to oo, respectively. The “concentration points” of the coordinate systems (singular
points in the conformal mapping function) are related to the singularities of the
ODEs obtained from separating the PDE (Moon and Spencer, 1961b, §6). The so-
lution of ODEs can be characterized by the location and type of singularities that

arise, both geometrically and analytically (Ince, 1956, §20).
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coordinate finite singular infinite  modified Helmholtz
system  boundary element boundary  special functions
Cartesian none oo line line exponential
circular circle point ray modified Bessel
elliptical ellipse  line segment hyperbola  modified Mathieu
parabolic none semi-oco line  parabola  parabolic cylinder

TABLE 2.1. Helmholtz-separable 2D coordinate systems

Singular elements are the fundamental unit of the coordinate system, arising
when one or more of the coordinates — 0 (Arscott and Darai, 1981); they are gen-
erally sources or sinks (see Table 2.1), due to their reduced dimensionality. Areas
can either be defined by finite boundaries, leading to a finite areas, or alternatively
by infinite lines, leading to infinite areas. Circles and ellipses partition the 2D do-
main most conveniently; their perimeters have finite length and they encompass
a finite area, resulting in periodic Sturm-Liouville expansions along their bound-
aries. For circular and elliptical coordinates, the finite boundary is parametrized
by an angle; for the physical problems considered here, the function must be 27
periodic in this angle.

As derived and implemented here, LT-AEM elements should not touch or over-
lap. When elements do intersect, the boundary condition along their circumference
will not be periodic, significantly degrading convergence. The Gibb’s phenomenon
and some potential methods to alleviate it are discussed in section D.2, as well as

by Jankovi¢ (1997) in the context of steady-state AEM.

2.3.2 Sturm-Liouville

The types of ODEs solved here can be related to those in Sturm-Liouville theory.
The ODEs that arise from separation of variables (2.8) can be written in the general

form of the Liouville equation

oS + vl + e =0 10
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where ) is the separation constant, the problem is considered over the range a <
z < b, and the functions p, ¢, and r are characteristic of the coordinate system used
in separating the governing PDE into ODEs (Morse and Feshbach, 1953, p.719).
Equation 2.10 has boundary conditions associated with it at = = @ and z = b,
whose type determines the nature of the solution. Simple, homogeneous boundary
conditions lead to a one-to-one correspondence between A and ), often signified
by A, and %, since the eigenvalues can be mapped onto the non-zero integers.
This is referred to as the standard Sturm-Liouville problem, but it does not arise in
the current application.

A boundary condition that ensures the independent variable is periodic, ¢'(a) =
Y(a + 2m) = 1(b), similarly leads to integer eigenvalues, but due to the ambiguity
in the boundary condition there is a duality of eigenfunctions for each eigenvalue
(Morse and Feshbach, 1953, p.726). This periodic domain leads to the singular
Sturm-Liouville problem. When expanding a circular boundary in polar coordi-
nates (r = rg,—m < 0 < ), the n'" eigenfunctions are sin(nf) and cos(nd), the
eigenvalues which force these functions to be periodic in 27 are found to be the in-
tegers by inspection. The eigenfunctions and eigenvalues in elliptical coordinates
also exhibit this even/odd duality, and can be mapped onto the integers, but the
numerical values of the eigenvalues depend on parameters appearing in the ODE
therefore they must be computed in a more general manner (see Appendix E).

Another deviation from the standard Sturm-Liouville case occurs when the
length of the domain becomes infinite; the totality (i.e., spectrum) of the eigen-
values for the Sturm-Liouville problem changes from the denumerably infinite
integers to an infinite continuum of real numbers. For example, Cartesian coor-
dinates or curves of constant angle in circular or elliptical coordinates lead to this
type of infinite domain (Courant and Hilbert, 1962, §5.12). When the boundary
being expanded becomes infinite in length there is no simple periodicity in the in-

dependent variable, and no manner to parametrize the entire curve with a finite
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quantity.

This transition is illustrated through the relation between a Fourier series and
Fourier transform, both of which are ways of representing a continuous function
using trigonometric series (Morse and Feshbach, 1953, p.454). We begin with a
type of standard Sturm-Liouville problem, the Fourier sine series of f(x) in the

region 0 < = < ¢, with conditions f(0) = f(¢) = 0;

> . nmtx
fla) = nZ:oA” sin (7) , 2.11)
which, using orthogonality, leads to the integral coefficient expressions

A, = %/Oef(a:) sin (?) de, (2.12)

that inserted back into (2.11) gives

fla) = %g Uoéf(g) sin <"T7f<> dg} sin <?) . (2.13)

We introduce the variable k, which at discrete values is k, = nn/{; the spacing

between the discrete values is Ak = k;,+1 — k, = 7/(. This simplifies (2.13) to

fle)=2 i:j Ak { / 1) sin (k) dq} sin (k) .14

where, in the limit as / — oo, the sum becomes an integral (the spectrum of eigen-
values for the Sturm-Liouville problem becomes continuous); Ak — 0 and k,, — k.
This leads to the Fourier sine transform pair (both a forward and inverse trans-

form),
2 o0 o0
flz) = —/ / f(¢) sin(kC¢) d¢ sin(kz) dk, (2.15)
™Jo Jo
which via symmetry can be extended to the more commonly used doubly infi-
nite range. In the limit as / — oo, the number of eigenvalues increases from the

countably infinite integers n = 0,1,2,... to the uncountably infinite positive real

numbers, 0 < k£ < oo. This illustrates how the spectrum of eigenvalues for the
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standard or periodic Sturm-Liouville problem (e.g., boundary matching along a
circle in polar coordinates or an ellipse in elliptical coordinates) is not as dense as
the spectrum of eigenvalues needed for an infinite interval.

In implementation, the continuous spectrum is approximated discretely (mak-
ing ¢ large but finite in (2.14)), but with less accuracy than the standard Sturm-
Liouville expansion. When expanding boundary conditions on an infinite interval
(e.g., expanding the effects of a point source along a 2D Cartesian boundary sep-
arating two regions of different materials — see section 3.3), we deal with two
infinite quantities: the number of terms in the eigenfunction expansion, NV, and the

width of the interval, ¢, over which they are distributed (Boyd, 2000, §17).

2.4 Convolution

Convolution is a special type of superposition, usually applied to the time vari-
able. It is used to create general time behaviors from impulse response functions.
Rather than requiring each LT-AEM element to have every possible distinct tem-
poral behavior associated with it, elements are derived for the “unit” impulse case,
which can then be readily made into any desired time behavior via convolution.
The Fourier and Laplace transforms both have convolution properties (Churchill,

1972, §17 & 123). Convolution in the time domain becomes simply multiplication
in the Laplace domain, therefore LT-AEM allows for separate handling of the tem-
poral, g(p), and spatial, @imp(x), behavior of elements. Essentially, space behavior
is handled with the AEM (i.e., spatial superposition with boundary matching),

while time behavior is handled using Laplace-space convolution.

2.4.1 Duhamel’s theorem

Duhamel’s theorem states that a general response is the weighted mean of past

time behavior, with the weight being the impulse response function (Ozisik, 1993,
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65). Duhamel’s convolution integral for a general time response, h(t), is

ht) = /0 et — P)g(r) dr (2.16)

where e(t — 7) is the impulse response (reversed with respect to the dummy vari-

able of integration, 7), and ¢(7) is the time behavior (see Figure 2.1). The integral

t—T1 T

FIGURE 2.1. Impulse response (left) and time behavior (right) functions

is only carried out over 0 < 7 < t, because the behavior in the future cannot affect

the current response. Often we re-define the impulse response as

eo(t —7) = { S(t =) . § i (2.17)

making e, a causal function (Ben-Menahem and Singh, 2000, §K); then we can ex-

tend the upper integration limit to oo,

/OOO eo(t — 7)g(T)dr = eo(t) x g(t). (2.18)

The Laplace transform of the convolution operator (x) is multiplication of the cor-

responding Laplace-space image functions,

Lleo(t) * g(t)] = eo(p)g(p); (2.19)

since multiplication in Laplace space is commutative and £ is linear, convolution

is also commutative and linear.

24.2 Convolution example

The point source (well) solution is illustrated to compare the two methods of per-

forming convolution. In the time domain, the response, ®y.n(r,t), at a distance r
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from a well pumping at the rate Q(¢) [L*/T], is found by convolution of the unit
well response with )(¢). Using the impulse 2D point source (3D line source) from
Carslaw and Jaeger (1959, §10.3), Duhamel’s integral for a well with arbitrary time

behavior is

cI)general(T; t) = CI)imp<7n7 t) * Q(t)
L . (—4 ( r ) Qr)dr. (2.20)

T 4r 0 t—7)a) t—7

where the upper limit of integration is kept at ¢, since without introducing a step
function, the impulse solution # 0 for 7 > t. The Laplace transform of (2.20), from

tables of Laplace transform pairs, is

Dgncen(r,0) = 5-Ko (11/2) Qo). @.21)

where Ky(z) is a second-kind zero-order modified Bessel function (e.g. McLach-
lan, 1955, §6). In the case where ()(t) is a constant, the integral in (2.20) can
be recognized as an exponential integral, through the change of variables { =

r?/ [4da(t — 7)]. This substitution leads to

Q r?
(Dcons ani ,t =—F — |, 2.22

tant (1 7) Ar ' \dat (222)

where E; is the exponential integral (e.g. Abramowitz and Stegun, 1964, §5). (2.22)
is the Theis (1935) solution for drawdown due to a well pumping at a constant rate.

Since L(c) = ¢/p, the solution when ()(¢) is a constant is in Laplace space

Dgeneral (1, 1) = %E‘l BKO (r\/gﬂ

Q1 /Oo e Y
=55 " du, (2.23)

which is found by looking up the inverse transform in a table (e.g. Carslaw and
Jaeger, 1959, p.495) or by computing the inverse using Mellin’s contour integral
(A.4) (e.g. Lee, 1999, §3.2.4). As would be expected, both approaches lead to the

exponential integral.
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In this example, both the time convolution integral and the Laplace space con-
volution can be readily evaluated. In more general cases, the convolution integral
cannot be evaluated in closed form or in terms of simple functions. Similarly, the
inverse Laplace transform is typically unknown, but can be readily evaluated us-
ing a numerical inverse Laplace transform.

Utilizing the Laplace transform makes general time behavior in LT-AEM far
more flexible, accurate and straightforward, compared to other transient AEM
methods. Where transient elements are used directly (Zaadnoordijk and Strack,
1993), each different time behavior (constant in time, pulse in time, etc.) requires
deriving a new element or evaluating a new time-domain convolution integral.
The Fourier transform approach of Bakker (2004b,c) could potentially use the sim-

ilar convolution properties of the Fourier transform.

2.4.3 Time behaviors for aquifer tests

While aquifer tests are commonly performed with pulse or step pumping rates,
many other pumping schemes are also in use. Slug tests (Hvorslev, 1951; Cooper
et al., 1967) use a nearly-instantaneous addition or removal of water from the well
as the impulse; they are often used in low-permeability environments or situations
where no pump is available. Step tests (i.e., pumping at 3-5 increasing levels) can
be used to estimate both aquifer parameters and pumping well efficiency (Jacob,
1947; Rorabaugh, 1953). Hantush (1964a) developed analytic solutions for flow to
a well in a confined aquifer pumping at exponentially-, hyperbolically-, and 1/+/¢-
decaying discharge rates. He characterized these as “uncontrolled” pumping rates,
which decayed due to the additional work required to lift water from greater depth
as the test proceeded. Black and Kipp (1981) treated sinusoidally-varying pumping
rates as a way to increase the diagnostic capacity of an aquifer test. Rasmussen

et al. (2003) used this approach, showing how the effects of several pumping wells,
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each with its own characteristic amplitude and phase, can be deconvolved from
observation data.

All of these different pumping behaviors, as well as arbitrary rates, are sim-
ply handled in LT-AEM by multiplying the impulse well solution in the Laplace
domain with the Laplace transform of the desired temporal behavior (e.g. Prud-
nikov et al., 1992) and then inverting the Laplace domain solution analytically or
numerically. Additionally, this treatment of general temporal behavior is not re-
stricted to well pumping rates; other boundary conditions or source terms can also

be handled in this manner.

2.5 Boundary matching

LT-AEM uses boundary matching to combine solutions, while maintaining the net
required boundary condition. Elements are derived using EE, therefore bound-
aries are curves of constant coordinates; when multiple elements do not share a
common coordinate origin, their boundary conditions cannot be handled gener-
ally using the EE approach alone. For example, with two non-concentric circles,
each circle only appears as a simple expression in its own coordinate system. For
the more general case, a Jacobian must be used to express flux in one system in

terms of the coordinates of another system (see Appendix B).

2.5.1 Simple illustrative example

Using a cross-sectional “view” of a simplistic well-river combination (ignoring
transient effects), Figure 2.2 shows how boundary matching is carried out for a
simple system with one active and one passive element. The curve in Figure 2.2A
shows the drawdown due to the pumping well (2.22), at first ignoring the effects of

the nearby river. The well is a passive element, where () is the volumetric flowrate
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FIGURE 2.2. Conceptual boundary matching example for well and river

leaving the well [L?/T]; it is assumed that this constant pumping rate can be main-
tained no matter how large the drawdown becomes. The river is an active element,
where the specified head is hgc [L]; it is assumed there is an adequate source of wa-
ter in the river to maintain this head.

Because the well is a passive element, the drawdown it creates does not depend
on any other elements, only @ and « (aquifer parameters). The river is an active
element; its effects depend on hgc and «, but the strength of the element cannot be
known without knowledge of the effects that the other elements have at this loca-

tion. The amount of water that it adds (or removes) from the aquifer is a function
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of the amount of head it must “make up” to bring the background conditions up
to the specified boundary condition (see top-left of Figures 2.2A and B).

In Figure 2.2B, the effects of both elements are illustrated in the cross-section in
terms of areas. The drawdown from the initial state due to the well is the lower
(darker) shaded area, while the mounding due to the river accounting for the ef-
fects of the well at the river is the upper (lighter) area. The river mounding is
shifted up to a common baseline with the well; the areas would otherwise over-
lap. The background condition at the river (the net effects of other elements at this
location) in this case is just the drawdown due to the well at the boundary of the
river. Figure 2.2 C shows the results of superimposing these two solutions, which
itself is also a solution (due to superposition), and by construction also satisfies the

three boundary conditions:
1. @ leaving the aquifer at the well,
2. hwell + hriver = hpc at river,
3. drawdown=0 at large distance.

This example is additionally complicated by time, represented through the
Laplace parameter p. The Laplace parameter lacks an exact physical meaning (see
Appendix A), therefore complicating plots. The simple example would be addi-
tionally complicated by the presence of multiple active elements, requiring an iter-

ative solution for the head effects at each active element.

2.5.2 Boundary conditions

A circle can be said to cut the 2D plane into two complimentary regions, the in-
terior and exterior (see Figure 2.3). The two domains share a radial coordinate
system, centered on the circle. The coordinate system has singularities at r = 0

and r = oo, one associated with each element in this case. The singular points
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of polar coordinates are related to the fact that the differential element, » dr df (an
expression of area), is not finite at these two locations. The differential element
in a general curvilinear coordinate system is given in terms of the system’s metric
coefficients (see Appendix B for metric coefficients of the coordinate systems given

in Table 2.1).

Exterior

Interior Element

Element

FIGURE 2.3. Interior and exterior circular elements

LT-AEM elements, which themselves are functions of the coordinates, must
produce physically plausible solutions, even when coordinates — 0 or co. Usu-
ally, this condition is satisfied automatically through the proper choice of basis
functions.

In polar and elliptical coordinates, the condition that the function be periodic
in 27 in the independent variables leads to the eigenvalues for the set of ODEs
(§2.3.2); the complete solution for arbitrary BC is the superposition of all the solu-
tions corresponding to every possible eigenvalue. For the radial ODE, only one of
the two types of solutions is used based on basis function behavior at the singular
points 7 = 0 and oco. Both solutions can be used in regions without singularities,
(e.g., an annulus in polar coordinates) but these are also handled by superimposing
two elements.

BC matching is used to determine A;? and B;? in (2.9); the BC can be Dirichlet,
Neumann, or mixed type. Interface BC (i.e., matching or continuity conditions)
are posed along boundaries between areas cases where we want a smooth solution

and smooth flux across the boundary. A mixed BC along the circumference of an
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LT-AEM element is, in its most general form,
EVO -n+ (P = F(s,p), (2.24)

where n is a unit normal and s is arc length or an angle that parametrizes the
boundary. Setting ¢ = 0 and ¢ = 1 leaves a Dirichlet BC, Fip(s,p) = Khgc(s,p),
the transformed potential along the circumference of the element. With ¢ = 0 and
¢ = 1, (2.24) becomes a Neumann BC where now Fi(s,p) = V®pc(s,p) - n is the

transformed specified flux normal to the element boundary.

__|_ ==
Qiot "N =i - N

T+ -
h’tot - h’tot

FIGURE 2.4. Example with active no-flow ellipse, passive point sources and active
circular matching element with different o inside and out (+ and — “parts” of
matching element offset for clarity)

A matching BC can be considered to be both an external and internal element
at the same physical location (see Figure 2.3 and the double circle in Figure 2.4);
each boundary condition is specified in terms of the total (“tot”) head due to all
visible elements. A Neumann and Dirichlet BC are posed on each side, setting
Fi(s,p) = F(s,p) and (K~ /KT)Fg(s,p) = F;(s,p). Typically specifying both
head and flux boundary conditions overdetermines a diffusion problem, but here
the pair only ensures continuity; values are not assigned, only equality between
inside and outside. It is noted that mathematically the “inside” and “outside”
elements associated with an interface condition can be considered as different ele-
ments (having different indices, k), but here they are referred to using the + nota-
tion, since they are different sides of the same element.

Passive element BC are specified in terms of @* - n or h* of individual elements,
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where

g=-V&=—-KVh (2.25)

is the Laplace-transformed Darcy flux [L]; they can be combined without iterating
via simple superposition. Active element BC (Figure 2.4) are specified in terms
of total discharge potential (P = Y, ®*) or normal flux (n- Gt = >, n - g*); if
there are at least two active elements, their strengths must be determined simulta-
neously.

Most elements of interest in LT-AEM are active elements; circles and ellipses
which define regions of different aquifer properties or source terms are typically
active. A line or point source can be active or passive; if the total flowrate at the
well or line is specified, it is passive (like a Theis well). If the total head is specified
at the well (like a sump or dewatering pump that is used to keep an excavation
dry) the element becomes active, because its strength depends on the surrounding

conditions.

FIGURE 2.5. Matching locations on a circular boundary

To determine active element coefficients, M collocation points are chosen along
the matching boundaries (see Figure 2.5), where the + sides of an element meet,
creating a system of 2 equations (M normal flux and M head) and 4N — 2 un-
knowns (N for even functions, but only N — 1 for odd ones). Following the AEM
overspecification approach of Jankovié¢ (1997), we choose 2M > 4N — 2 and the
system of equations is solved in a least-squares sense. Overspecification is consid-
ered to produce a smoother solution than the even-determined case 2M = 4N — 2

does, and for the same A, N is smaller (i.e., the solution does not require the
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2M — (4N — 2) highest harmonic basis functions). The inclusion of more control
points, beyond those needed to make the system evenly determined, is not a great
computational cost; these extra points tend to improve the quality of the solution.

For these reasons, overspecification is here used in LT-AEM applications.

2.5.3 Detailed boundary matching example

The details regarding boundary matching are introduced using the simple AEM
example shown in Figure 2.6; it includes two point sources and nested circles of

different hydraulic conductivity.

Head matching Head matching ensures no energy is gained or lost when crossing
the boundary (hydraulic head is a measure of energy per unit weight of water)
and enforces a “smoothness” in the final solution. It can be expressed generally for

each matching element as

B?o?(rno) = Bﬁ); (7n0); (2.26)

the total heads (due to all contributing elements) immediately interior (—) and

exterior (+) to the n™ element boundary are equal. The total head is due to the

& Q4 v

n

FIGURE 2.6. Example of three active circular elements of different K (background
K;) and two passive point sources, ()4 and ()5

current element (n) and all elements in the background of the current element.
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Expanding (2.26) in terms of its components and &, leads to

Nog+ Npg—

1 |- _ 1 |- _
ot oF = i oF 2.27
rarl AR el DS 7 (2.27)

Z L, b 1,
where Ny, is the number of elements in the inner and outer background of the
element, and r,, indicates all elements in this expression are evaluated on the
boundary of element n. For element 2* in Figure 2.6, element 3" makes up the
“inner background”, while element 1 and @), are in the “outer background”. In
Figure 2.7 the hierarchy of elements is illustrated as a tree; background elements
include the parent element and all elements that share the same parent (connected
by a dashed line in Figure 2.7). Expression 2.27, for head matching on the bound-

ary of element 2 would be

KL B2 4 B+ 4 ] , (2.28)

_L $2— | 53+
- —K[q) + O]

720
2

720

where the element number is super-scripted (point sources need no sign). Point
source ()5 and circles 1— and 3— do not appear in this expression, as they are nei-
ther immediately internal nor external to element 2 (see Figure 2.7). This distinc-
tion is adopted here to allow regions with different PDEs to be matched; this is a
requirement for the modified Helmholtz equation (due to the appearance of the
material properties in the PDE), but not for the Laplace equation (the case con-
sidered by Strack et al. (1999)), where the material properties only appear in the

definition of .

Normal flux matching Flux matching applies to the same set of elements in head
matching, but is a statement that mass is not stored or lost at the boundary, since a
net difference in mass flux implies mass storage. This is expressed at each match-

ing element as

n, - (_l;t,tal(rno) =1y, - (_lt_otal(rno) (2.29)



46

circle 1 ~~~"‘well4"’—' circle 2

circle 3

well 5

FIGURE 2.7. Tree representation of element hierarchy in Figure 2.6; co represents
the background between the elements

where the subscript on the normal indicates the element it is associated with. (2.29)
states that the total normal flux across the element boundary is balanced. For Fig-

ure 2.6, in terms of ®, the flux balance across element 2 is

0Pt 0Pt 1 0Pt 0P*
+—J71T2 + _—J 172 _Jr4r2 = 230
[ ory | on r00, " ] (2:30)
08 0% 109
ory Ors T 00, o
where subscripts on r and ¢ indicate the associated element and Jy,,, = %g—é +
%—9; 5—7;1’2 is a Jacobian; each of these coordinate derivatives can be computed explicitly

(see Appendix B for details and examples). ® for each element is defined in terms
of a local coordinate system; differentiation with respect to local coordinates (e.g.,
0D /Ory) leads to simple expressions, compared to working in a single global

coordinate system everywhere.

2.6 Solution for coefficients

The solution for the coefficients of active elements in an LT-AEM problem can be

posed in three ways

e a fixed-point iteration over active elements, each iteration solving a small

least-squares problem for the coefficients of a single element;
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e a direct least-squares solution for the coefficients of all active elements simul-

taneously;

e analytical solution for coefficients in certain simple geometries through eigen-
function orthogonality; quadrature can be used to approximate these inte-

grals.

Many AEM problems are solved using the fixed-point iteration; it requires the
least amount of the problem to be kept in computer memory at a time. The ready
availability of parallelized LAPACK (Anderson et al., 1990) and BLAS (Blackford
et al., 2002) linear algebra libraries, makes the direct matrix solution method more
feasible and in some cases much faster than the iterative method. Program logic

and code size are improved for the direct approach as well.

2.6.1 Fixed-point iteration

When posing multiple active boundary conditions as a fixed-point iteration, only
the coefficients of the “current” element are computed, all other unknown coeffi-
cients are assumed known. We use the previous example from section 2.5. Starting
with element 1 as the current element, head matching one boundary 1 is put into

the form

O (1 O (ry 5 (ry =9 T
f§0 ! - K('1 ’ - ;(1 ’ a Kio [(I) +(T10> + ®4(T10)} ’ (2.31)

where the inside and outside coefficients of the current element (1) are on the left
side, all passive and background active elements are on the right side. This equa-
tion is posed at M evenly-spaced matching locations around the circumference of
element 1 (%’k, k=1,2,..., M) -see Figure 2.5, in terms of the 4N — 2 coefficients

of element 1 (2N — 1 for each side). For example, the ®'* term in (2.31) can be
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expanded using the definitions in terms of the eigenfunction expansions (2.9) into

o(r10)¢0(01) - .. En—1(r10)dn-1(01)  &i(r10)¥1(61) - .. Env—1(r10)¥n-1(61)
§o(r10)P0(62) ... En—1(r10)dn—1(02)  &1(r10)91(02) ... En—1(r10)YN—-1(02)

: . (2.32)

50(7’10);%(91\4)- : -fol(Tlo).(bel(aM) 51(7“10);/11(9M). : -fol(Tlo);»bel(@M)

even angular functions odd angular functions

a M x 2N — 1 coefficient matrix, which is multiplied by the coefficient vector
X = [AO7 s 7AN—1aBb ce 7BN—1]T7

following the convention of (2.9). The flux matching equation on the same bound-

ary is similarly written

ng - [q1+(7’10) - (11_(7‘10” =n; - [(15(7”10) —q*"(ri0) — q4(7"10)} ; (2.33)

expressing the flux in terms of derivatives and Jacobians gives

o+ 9P~
— = 2.34
|: 87“1 87"1 :|r10 ( 3 )
0P° 0P 1 09 0P
JTFT’1 - JT’QTl - J92T1 - JT’47"1
67“5 ? 07"2 T2 892 87“4 o

An analogous set of equations is made, with each active element taking the role of
the “current” element in turn. In this formulation, 3 small least-squares problems
are solved (one for each of the active elements), for each iteration; the background
effects (right hand side) are constantly being updated as iterations continue.

In matrix form, (2.31) and (2.34) for element 1 are

Ax=Db
Lo+ _Ll- L5 L (H2 4 Pt
Yo o | = | ff w Ct ) (2.35)
6@1+ _8<I>1_ - 8;{»’)(] - 8@2-"-(] . iaq>2+(] . 8¢4J .
or Ory Ors <151 Org “T2T1 o 00y 0211 Ory U Tar1

where, for notational simplicity, Ax is given together on the left hand side in terms

of ®. Since everything in b on the right of (2.35) is assumed constant in the current
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iteration, these terms reduce to a vector of length 2A/. A is a matrix of size 2M x
4N — 2. Increasing the number of active elements only complicates the calculation
of b, and increase the number of iterations required overall, it does not increase
the size of each individual A.

The fixed-point iteration described here is equivalent to a block Gauss-Seidel it-
eration, since computed coefficients are used immediately in the next available cal-
culation (Isaacson and Keller, 1966, §2.4). The iterative approach can be improved
slightly using block successive over-relaxation (SOR), where a weighted combina-
tion of the current and previous iterations are used to increase convergence; this
method is simple to implement, but does not lead to large improvements over the

simplistic Gauss-Seidel method.

2.6.2 Direct matrix approach

In the direct formulation we solve for all active elements simultaneously. This
significantly increases the size of A, but eliminates the need to iterate. A used in
the fixed-point iteration are the diagonal sub-block elements of the direct method;
see the shaded blocks in (2.36). The effects of one active element on another (in
b of (2.35)) become the off-diagonal terms in (2.36). The matching equations for
element 1, (2.35), along with the analogous expressions for matching head and
flux on elements 2 and 3, becomes the diagonals when the entire problem is given

in matrix form, the left-hand side (Ax) is

- Hl+

ol-

Ko R Ko 0 0 0
n-qF" —n-q° | —n gt 0 0 0
ks 0 s —o o 0
Ko Ko K Ka (2.36)
n, - q1+ 0 n, - q2+ —ny - q —n, - q3+ 0
2— 3+ 3—
0 0 0 ¥y ¥y ~&
0 0 0 n3 - q’ n3-q°t  —n3-q’"
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and the right hand side (b) is

Ko _ (2.37)

In (2.36) the off-diagonal flux terms involving two circular elements have both r
and ¢ components, as in (2.34). In the direct matrix form, only passive elements
(here wells) and specified BC values appear in b. Each entry in this matrix for-
mulation is itself a smaller M x 2N — 1 matrix, as was the case in (2.35). In this
block-matrix formulation, several things become clearer, compared to the iterative

formulation:

1. not every element “sees” every other element (Figure 2.7). This is a type of

domain decomposition, referred to as substructuring;

2. different £ sides of each matching element can be considered separate enti-

ties, appearing as columns in the A matrix;

3. it is possible to determine the coefficients analytically using orthogonality

and numerical integration;
4. other types of iterative methods can be used to solve for x.

The matrix in equation (2.36) is n2M x n(4N — 2), where n is the number of active
elements. As more active elements are added the matrix becomes larger. A is non-
symmetric and its sparseness is a function of whether the elements are nested. If
all elements are at the same “level”, in the same background (same parent in Fig-
ure 2.7), then each element is effected by every other element, resulting in A being
full. When an active element appears inside another active element, A will have

some zero off-diagonal entries. Outside their circumscribing element, the inside
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elements are not seen; the effects of elements inside it are propagated outside it
using the large element’s basis functions, often simplifying calculations.

The non-overlapping domain decomposition method known as substructuring
(Smith et al., 1996, §4) is commonly applied to gridded problems, but can also be
applied to the matrix problem for the generalized Fourier series coefficients posed
here. The concept is based on the principle that portions of the domain, which are
loosely coupled, can be solved independently or nearly independently (the benefit
coming from solving them in parallel). For example, in Figure 2.6 element 2 is
the only connection between elements 3 and 1. In cases where many elements are
nested inside one larger element, the larger element can be decomposed into its
inner and outer contributions. Then these problems can be solved independently
and finally re-combined. Quarteroni et al. (2000, §3.9.2) give an illustrative worked
example of this approach.

The fixed-point (Gauss-Seidel) iteration is one possibility of solution method
for both AEM and LT-AEM (Furman and Neuman, 2003). When the problem
is posed in matrix form, (2.36 and 2.37), to allow direct solution, any matrix so-
lution technique that is applicable to over-determined systems could be applied.
This includes general iterative techniques, such as bi-conjugate gradient or quasi-
minimum residual methods (e.g. Freund and Nachtigal, 1991). The direct method
can lead to round-off error in the solution, especially when there is a large con-
trast in properties between elements. The direct solution can be improved using

an iterative approach if high accuracy is desired.

Analytic solution for coefficients When posing the problem in the direct matrix form,
we can compute the coefficients analytically, using orthogonality and Cramer’s
rule. This approach is similar to handling the whole problem using traditional an-
alytic EE techniques; there is no least-squares solution in the boundary-matching

problem. The generalized Fourier series coefficients are found via orthogonality
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integrals, generally it is only possible to evaluate these integrals in closed form
when the active elements share a coordinate (e.g., they are confocal or concentric).

For example, a closed-form solution would be possible for a point source at the
center of a circular boundary, a line source at the focus of an elliptical domain, or a
layered Cartesian problem. In general, for 2D (see Table 2.1) this includes solutions
comprised of both a singular and finite or infinite element of the same coordinate
system. Other combinations of geometries typically would not lead to closed-form
solutions for the coefficients.

For a system of n unknowns, Cramer’s rule requires the evaluation of n + 1
determinants of size n (e.g. Householder, 1975, §5). Because of the large computa-
tional requirements, this method would be impractical for n > 5.

Two LT-AEM applications that could capitalize on analytically-derived coeffi-
cients include the Post-Widder inverse approach (§5.3.1) or analytic calculation of

%). Both are

parameter sensitivities required for an inverse problem (e.g., % or
possible if analytic (or high accuracy) derivatives can be computed with respect to
model parameters or (in the case of the Post-Widder inverse) the Laplace parame-

ter.

Quadrature approach to coefficients Numerical quadrature can be used to extend an-
alytic approach described above beyond simple combinations of concentric ele-
ments. In situations where the orthogonality integrals can be posed, but not com-
puted in closed form, numerical quadrature could be applied. The simplest ap-
proach would be to uniformly subdivide the 27 boundary, using the the trapezoid
rule or Chebyshev quadrature. This would result in a very similar formulation to
the least-squares collocation approach, but without the explicitly posing the least
squares problem. Boyd (2000, §4.3) posits that the quadrature and collocation ap-
proaches are operationally equivalent; they are just different ways of utilizing the

function sampling points along the boundary of the element. As an alternative to



53

using the trapezoid rule or some other method with fixed abscissa, an adaptive
integration routine (e.g., QUADPACK, which utilizes Gauss-Kronrod quadrature
(Favati et al., 1991)) could be used. Adaptive methods increase the number of
sample points where needed to achieve a target error tolerance, allowing the col-
location points to be adaptively clustered where they would be needed most (e.g.,
near singularities where gradients are steeper).

A potential advantage of the quadrature approach is that some integrals that
cannot be evaluated in closed form, would be readily evaluated numerically. The
difficulty in a numerical integration is proportional to the ability of the function
to be fitted with polynomials of some sort. If two active elements are distant from
each other, a low-order polynomial approximation may be appropriate and more
efficient than utilizing the full set of proper basis functions arising from the stan-
dard approach.

As an example, the quadrature approach is illustrated on the first row of (2.36)
in the coordinates of element 1. This cannot be computed analytically, due to the
fact that the integral of the off-diagonal terms with respect to the angular coordi-
nate of element 1 cannot be evaluated in closed form. Multiplying the first row of
(2.36) and (2.37) by the even basis functions of ®'*, cos m#f;, and integrating over
—m < 0; <, gives the following expression

alt al- 1 [T 2+
E_Ejtz cos(mt) @ (ra, 0) db)

—Tr

_ / " cos(m) PX"’) _ @2‘*)} a0, (2.38)

where the first two integrals were reduced to the m™ unknown coefficient using
orthogonality, and the rest of the integrals can be evaluated numerically. A similar
procedure is performed for the odd basis functions, sinné,, resulting in an analo-
gous set of equations for b} and b, involving similar integrals.

The other rows of the matrix are handled analogously, with the even and odd
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basis functions of each element being multiplied and integrated with all the other
terms. Orthogonality of each element’s basis functions is used to evaluate the in-
tegrals falling on the shaded diagonal blocks in (2.36).

The larger matrix problem for all n(4N — 2) coefficients is now broken into N
smaller matrix problems, as the orthogonality of the eigenfunctions has been used

to decouple the solutions for the different coefficients.

2.6.3 Computation of least-squares solution

In both the fixed-point and direct matrix approaches, least-squares problems will
need to be solved numerically for the generalized Fourier series coefficients. For
robustness, we take a QR decomposition approach rather than solving the normal

equations.

Normal equations The normal equations are conceptually simpler and require fewer
operations than QR decomposition, and are therefore commonly used. Beginning
with Ax = b and pre-multiplying both sides by A7, we create a Hermitian (and
therefore invertible) matrix

ATAx = A™b. (2.39)

Pre-multiplying by the inverse of A" A results in an expression for x often referred

to as the generalized inverse (Menke, 1984, §4.1),

x = (ATA)'A D, (2.40)
— G, (2.41)

which is the traditional solution to the normal equations. This approach is appeal-
ing because after computing G once, it only requires one matrix-vector multi-
plication to compute x for each new b. Unfortunately, numerical problems plague

this approach. When the square matrix ATA is formed, much of the numerical
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detail of A can be lost (Golub and van Loan, 1996, §5.3.2). To obtain the same accu-
racy using the generalized inverse as obtained using QR decomposition, a higher

working precision must be used in the calculation (Lawson and Hanson, 1974, §19).

QR decomposition The least-squares problem is solved via QR factorization by sup-
posing first that a Q (a matrix comprised of orthogonal column vectors) has been
found such that

Q’A=R= {Rol} , (2.42)

where R, is upper triangular (Wilkinson, 1965, §9.28). The product of the trans-

posed orthogonal matrix and the right-hand side is decomposed as
T C
Qb= [d} , (2.43)

where c is conformal with R;. The least-squares problem is the minimization of

the solution residual, here quantified in terms of a squared matrix norm,
|Ax - b} = [|Q"Ax — Q"bl[3. (2.44)
= |[Rix — cf[5 + [|d][5, (2.45)

where ||x||2 is the Euclidean norm. (2.45) shows that the minimum is found when
the first norm = 0, therefore x can be computed from R;x = c via back-substitution.
||d||3 is then the least-squares residual; it is error that cannot be reduced through
choice of x. When computing least-squares using the LAPACK routine ZGELSS
(Anderson et al., 1990) or equivalently in Matlab using the “backslash” operator
(MathWorks, 2007), this is the approach taken. The orthogonal matrix Q is com-
puted using Householder reflections (e.g. Golub and van Loan, 1996, §5.1.2) to cre-
ate columns of zeros below the diagonal in A, a numerically stable process. Once
A is made upper triangular, the product of all the individual Householder trans-
formation matrices is Q. An added benefit of the QR decomposition approach is
its robustness with respect to degenerate columns in A; G779 fails to exist for this

degeneracy, discussed in section E.3.
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2.7 Solution for head or flux

Utilizing the structure of A used in the direct matrix solution section (2.6.2), a
modified A matrix can be created, where the rows correspond to the desired eval-
uation points, rather than the collocation points along the boundaries of the active
elements. Using x determined in section 2.6, the head or flux is found through

a matrix-vector multiplication. As an example, to compute the head and Carte-

FIGURE 2.8. Geometry of head and flux calculation at ¢ (marked by x)

sian fluxes at a point ¢ in the background (see x in Figure 2.8), we construct the

following system to determine the effects of the active elements,

Tt o TGeRd 00000 Fe
n, - q1+(7”1c, 910) O —g - (_11+(7“2c, 620) 0 0 O X = [(zc (246)
n, - qH(Tlc, 91c) 0 —n,- q1+(7’2c, 92c) 0 00 dyc

where the final solution is found by adding on the contribution due to the pas-
sive elements. The solution is computed by evaluating the effects of the active
elements that can “see” the current calculation point, those elements that do not
directly contribute to the solution at the current calculation point have zeros in
their columns of (2.46). For circular element 1+ in (2.46) the calculation point is at
the local coordinate (ry., 0;.), the location of the calculation point in the local coor-
dinates of the element. For the Cartesian fluxes, much of the calculation is shared
between the second and third rows, one is projected onto the z-axis, the other onto

the y-axis. Obviously, the fluxes could be computed with respect to any desired
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coordinate system, but rectangular vector components are typically required by
plotting software.

Lastly, the solution is a computed at a vector of values of the Laplace param-
eter and the time-domain solution is estimated using a numerical inverse Laplace

transform algorithm. Several algorithms are discussed in Chapter 5.
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Chapter 3

DERIVATION OF ELEMENTS

We cover the derivation of LT-AEM elements for different geometries. Circular,
elliptical, and Cartesian 2D coordinates are investigated with general and special
case elements derived. 3D elements are explored, to give a feel for the direction

this work might proceed.

3.1 Circular elements

In the earliest AEM applications (e.g. Strack and Haitjema, 1981b; Strack, 1989)
circles were approximated using polygons of line doublets. Truly circular steady
AEM elements were developed by Salisbury (1992) for one or a small number of
circles using a complex power series approach, where the trigonometric series are
represented in the form of (D.3). Jankovi¢ (1997) and Barnes and Jankovi¢ (1999) il-
lustrated the eigenfunction expansion approach, also for the steady-state problem,
but showed how it easily extended to numerous circular elements.

Transient circular LT-AEM elements were given by Furman and Neuman (2003)
in their LT-AEM proof-of-concept; they are re-derived and extended here in a gen-
eral framework, illustrating some of the points made for elliptical coordinates in
the more familiar polar coordinates, and showing the connection between aquifer
test solutions and LT-AEM elements. The solution for a well with a finite radius,
with and without wellbore storage is given as a simplified form of an external cir-
cular element.

Radial coordinates are defined as = = r cos 6, y = r sin # with the inverse defini-

tions r = /22 4+ y? and 0 = arctan y/x. The metric coefficients for standard polar
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coordinates are

hy=1,  hg=r (3.1)

The modified Helmholtz equation (2.3), expressed in circular cylindrical coordi-
nates (Ozi§ik, 1993, §3), is
o’ 10d 1020,
W—F;E‘Fﬁﬁ—ﬂq)—o, (32)
with the condition that ® is 27-periodic in §. By substituting the form ®(r,6) =
B(r)©(0), this PDE can be separated to the simple harmonic oscillator and modi-

fied Bessel ODEs,

e,
d /1dB , P
a(a) - (o) meo o

where n is a separation constant. A general solution to (3.3)
0,(0) = A cos(nf) + C sin(nb), (3.5)

where sin and cos are the eigenfunctions for this problem. The corresponding gen-

eral solution for (3.4) is
B,(r) = DI1,(rk) + EK,(rk), (3.6)

where I, and K,, are the first- and second-kind modified Bessel functions (e.g.
McLachlan, 1955, §6) and A, C, D, and FE are constants. The modified Bessel func-
tions are simply general solutions to (3.4) (not eigenfunctions), taking on a passive
role in the calculation. The Bessel functions take on the order (n) dictated by the
solution to the periodicity condition associated with (3.3) and their argument is
controlled by x, which includes material properties and the Laplace parameter.
The simple harmonic oscillator (3.3) and its solutions (3.5) have no singularities
for finite 0. The modified Bessel equation (3.4) has singularities at » = 0 and oo, as

do its solutions (3.6) (McLachlan, 1955, p. 185).
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FIGURE 3.1. First- (I,,) and second-kind (K,,) modified Bessel functions of real ar-
gument

Enforcing periodicity in 6 restricts the separation constant to integer eigenval-
ues. Recombining the ODE solutions (3.5 and 3.6) and summing over the spectrum

of eigenvalues gives general solutions to (3.2) for internal and external elements as

O (r > 1o, 0) = Z K, (k) (a, cosnf + b, sinnb) , (3.7)
n=0

O (r <rop,0) = Z I.(rk) (¢, cosnf + d,, sinnf) , (3.8)
n=0

where a,, b, ¢,, and d,, are coefficients to be determined and the radial solutions
in (3.7) and (3.8) are chosen based on the fact the solution must remain finite. Nor-

malizing the radial basis functions by their value on the boundary, and truncating
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the infinite sum at N terms gives the implemented form of the circular elements as

_ K
O (r >, 0) = < ”((7:7{)) (ay cosnb + b, sinnb) , (3.9)
n=0 n
N-1
I
O (r <rp,0) = I"é:% (cncosnb + d, sinnd) . (3.10)
n=0 "

In the LT-AEM formulation used by Furman and Neuman (2004) (which used
a fixed-point iteration), the solution inside could be expressed in terms of the so-
lution outside. The simplification is unique to polar coordinates, where the same

angular eigenfunctions are used for both interior and exterior elements.

time=2.0x10"° time=1.25x10"* time=6.0x10~*

FIGURE 3.2. Contours of head for circular domain with specified head, no-flow,
K > Kypg, and K < Ky, at three different times. Injection well comes on between b
and ¢

Figure 3.2 is an example of a finite domain using five circular elements and a
point source. The outer and upper-left circles are type I BC (h = 2), the lower-
right circle is a type II BC (no-flow), the lower-left circle is a matching boundary
for a region of higher K, and the upper-right circle is a matching boundary for a
region of lower K. The initial condition is = 1 everywhere. Panel (a) shows the
system at early time, where there are steep gradients around the specified head
elements (contour interval = 0.1). Panel (b) shows the system at a later time, when

the gradient is flatter across the high-K element, steeper across the low-K element,
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and contours are perpendicular to the boundary of the no-flow element. A well
begins injecting at ¢ = 3 x 107*, taking the head in the middle of the domain in

panel (c) to levels above those of the specified head boundary conditions.

3.1.1 Well as a circle of small radius (no storage)

A useful simplification of the general circular solutions (3.9) and (3.10) is a circle
of small radius. The radius of a well, r,, is assumed to be small enough that the
variation in head across it is negligible. This simplification leads to the finite-radius

well source. We begin with the well screen boundary condition of

9p)Q = /027r [T

where a general pumping rate is represented by convolution of a general time

5+
8;; } d; (3.11)

behavior ¢(t) and a constant @), which is g(p)Q in Laplace space. Substituting (3.7)
into (3.11), we get

— 00 2w
% = nz; [%Kn(rm)] N /0 (an cosnl + b, sinnf) do, (3.12)

but due to symmetry only the eigenvalue n = 0 survives the integration. Using
a recurrence relationship for the derivative of a Bessel function (McLachlan, 1955,

p-204), the expression for ay is

gpe_ 1
= NI
O o, Ky (ryrk)’ (3.13)
this makes the final expression for the finite-radius well source
_ Ko(rs
Dwen(r) = g(p) < olrs) (3.14)

27kry Ky (ryk)

This solution (for constant ()) was developed by van Everdingen and Hurst (1949)
and first given in the hydrology literature by Hantush (1964b). As r,, — 0 it
asymptotically simplifies to the Theis (1935) point source solution (2.22) (Lee, 1999,
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§4.3.2). Although Theis’ point source of infinitesimal radius is commonly used, the
tinite radius well source is more appropriate when observations are made very
close to the pumping well, see Figure 3.3. Capitalizing on the axial symmetry, the

plot is in terms of dimensionless time and drawdown

K 4m(D — D)
tD—@, SD—T. (3].5)

Additionally, this more physically realistic solution will be adapted to account for
wellbore storage and skin effects in the next section, for which the Theis solution
cannot be modified to accommodate.

For g(p) = 1/p, the solution for the circle of small radius (3.14) is both an LT-
AEM element and an analytic solution found in the literature. Passive LT-AEM
elements are the simplest type of LI-AEM element, because they usually only have
one free parameter (( in this case). The active element version of (3.14) is found by
solving for @ = g(p)Q, where the boundary condition is specified in terms of total
head, Protal = Pwven + (I)bg/

K (ryk)

Q = 27T/€Tw (iLBCK — i)bg> m
o\"w

(3.16)

Here hpc is the head specified at the well and @bg is the net effect of background
elements at the wellscreen (if this is zero, the solution simplifies to an analytic
solution for a constant head well). Once () in (3.16) is found, it is substituted into
(3.14). Convolution allows arbitrary pumping rates to be assigned to the point
source; in this case it is computed in a way to make the head at the well constant
in the presence of other elements. This is an example of a well-known analytic
solution adapted to be an active LT-AEM element.

If r,, becomes very large (e.g., hand-dug wells or infiltration galleries), both
wellbore storage (addressed in the next section) and the variation of the head
around the circumference of the well (due to background effects) must be ac-

counted for. The simplification leading to (3.14) cannot be justified, which results
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in an expression involving an infinite sum over all the eigenvalues to properly ex-
pand the boundary condition at the well. For all the well solutions derived here,

we assume minimal change in background effects across the diameter of the well.

10 Ll Ll Ll Ll Ll

Sp

1k away from wellscreen

0.001 0.01 0.1 1 10 100 1000

FIGURE 3.3. Finite-radius well solution for a range of rp = r/r,, values; sp and tp
are defined in (3.15)

In summary, the most general LT-AEM well solution is (3.9) (i.e, a circle with
variable boundary conditions around its circumference); (3.14) is the next most
general solution, involving the simplifying assumption that the effects of the well
are constant across the well’s diameter. Finally, the Laplace space form of the
Theis solution (2.22) additionally assumes the wellbore radius itself is insignifi-
cant. When r > 5r,, (see Figure 3.3) this is a reasonable approximation to the
general solution. In most applications, r,, < 30 cm, therefore the effects of the well
radius on the solution are only significant within at most 1.5m of the well. The
finite-radius well solution (in both steady and transient AEM) is often used solely
because it avoids the singularity at the well (a problem when computing results

onto a grid for contouring), which can occur when the Theis solution is used.
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3.1.2 Wellbore storage

For large-diameter pumping wells, especially when aquifer storage is small and
observations are made near the pumping well at early time, the effects of wellbore
storage can be very significant. Beginning with the finite-radius well solution just
derived, these effects can be accounted for, in a manner similar to Papadopulos
and Cooper (1967) (who adapted it from the equivalent heat conduction solution
of Carslaw and Jaeger (1959, §13.5)), but allowing for matching of elements. The
boundary condition is derived from the mass balance for the wellbore (see Fig-

ure 34), Of the form Qin — Qout = A‘/storage/At 7

ds,,
)

Qu—Q=Cu” (3.17)

where Q4 is the volume flowrate [L3/T] into the well from the aquifer, Q is the
volume flowrate leaving the well through the pump, s,, is the drawdown [L] in
the wellbore, and C,, = dV,,/ds,, is the coefficient of storage [L?] for the wellbore

(relating drawdown to change in volume). In open boreholes, C,, = 7r?, where

Q
Initial head
in aquifer
A
e
¥
Te <Well casing

I
«<—Well screen or

wall of open hole

Aquifer

FIGURE 3.4. Large diameter well; adapted from Papadopulos and Cooper (1967)

r. is the casing radius over the interval where the drawdown of the water table is
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taking place. For a pressurized borehole, C,, may need to account for fluid com-
pressibility. )4 is the total inflow from the aquifer; for an active LT-AEM element

this can include the effects of other elements. A general expression for total well

27
Qi = /0 [ra%t} dé. (3.18)

Assuming that 7, is small enough to ignore the variation in the effects of other

inflow is

elements across the well diameter (P (r,,) is constant with respect to ), (3.17) and
(3.18) become

(3.19)

|:aq)tot:| WT? |:a®tot:|
My | 2t ,

or T K ot ,
after converting drawdown in the wellbore to @, at the well screen. Taking the
Laplace transform of (3.19) leads to an inhomogeneous type IIl boundary condition
(2.24) at the well screen,

9 a‘i)tot pr?
or -

QI

(I)tot(rw) — (p)Q

. 3.20
Kry, T w ( )

Here @it = Pwen + Y Pog, Where Dy is (3.14), with g(p) = 1 and Q = awen to
give an impulse response, with the strength left to be determined. By considering
the effects of other elements, a passive well element (3.14) becomes an active one,

which must have its coefficient determined at run-time. The solution then becomes

awell Ko(7K)

(T)WQH(T’) = (321)

27ty Ky (ryk)

this solution only has one degree of freedom; there is only one eigenvalue. A more
general solution could be derived, accounting for the changes in the effects of other
elements across the circumference of the well, leading to a general circular element
with type III BC of (3.20), but keeping the infinite series of eigenvalues like (3.9).
For a single well (no background elements), the wellbore storage solution has a
unit slope on a log-log plot (see Figure 3.5; this figure does not follow the conven-

tion of Papadopulos and Cooper (1967), who re-define ¢ in terms of r,,), which
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aquifer storage

Theis  —
ry No storage
SS=0'1 muenn 7
Ss=0.01 nn
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FIGURE 3.5. Drawdown at wellscreen for large-diameter well (r. = r,,); sp and tp
are defined in (3.15)

is characteristic of drawing water from a finite reservoir (in this case the well-
bore). The finite-radius well solution without wellbore storage (3.14) has more
drawdown than the point Theis solution (for the same radius from the center of
the well), then accounting for the storage of water in the well decreases the ob-
served drawdown. The curves represent different aquifer storage coefficients; if
there is more storage available in the aquifer, less must come from the wellbore
and therefore the deviation from the Theis solution is smaller. The wellbore stor-
age solution is more useful for aquifer test interpretation than (3.14), because the
curves in Figure 3.5 are what would actually be observed in a large-radius pump-
ing well.

Following van Everdingen (1953) (Moench (1984, 1997) in the hydrology liter-
ature), an additional skin factor could be added to the formulation of )4 (3.18) to
account for the different permeability associated with a thin under-developed or

gravel-packed zone surrounding the wellscreen. This could also be handled using
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a small circular LT-AEM element circumscribing the well, to represent the near-
well zone more explicitly. This is analogous to the approach taken by Fitts (1991)

for steady-state flow to a well in 3D.

3.2 Elliptical elements

Obdam and Veling (1987) and Strack (1989, p. 487) developed steady elliptical ele-
ments by conformally mapping the ellipse onto the circle, which had already been
solved. Suribhatla et al. (2004) first used the eigenfunction expansion approach to
handle many steady elliptical elements.

Transient elliptical elements are derived here using a procedure analogous to
that for circles in section 3.1. Bakker (2004a) also derived elliptical AEM elements
for the modified Helmholtz equation, in the context of steady flow in a multi-
aquifer system. Bakker and Nieber (2004b) and here in Appendix F, elliptical solu-
tions are also derived for the steady linearized unsaturated flow problem. In these
applications there is no time dependence, therefore the solutions do not include

the parameter p, which becomes large at small time.

FIGURE 3.6. Components of elliptical coordinates (7, ¢); f, a, and b are semi-focal,
-major, and -minor lengths, respectively.
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Elliptical coordinates (see Figure 3.6) are defined by
x + iy = fcosh(n + i), (3.22)

where (7, 1) are dimensionless elliptical coordinates, and f is the semi-focal length

[L]. Equating real and imaginary parts of (3.22) leads to
x = fcoshncos, y = fsinhnsiny. (3.23)

These can be used to compute the metric coefficients [L] (see Appendix B),

hy = hy = f+/1/2[cosh 21 — cos 2¢] = f\/cosh2 n — cos? 1, (3.24)

where the back-transform is 1 + i) = arccosh [(x + iy)/ f], but the multi-valued

complex hyperbolic arc cosine is expressed in terms of a single-valued functions in

the form
. N2
(=24 /(22) — 1) 2>0
N+ = - : (3.25)
In % — (%) -1 z <0

this convention confines the branch cut to the line between the foci and returns the
value corresponding to n > 0 when y = 0.

The modified Helmholtz equation (2.3) in 2D elliptical coordinates (Moon and
Spencer, 1961b, p.17) is

2 ?d 9’ -
12 [cosh 21 — cos 2¢] [87}2 + 8¢21 — K e=0, (3.26)

with the condition that ® is 27-periodic in ¢. Substituting the form ®(n,) =
H(n)¥(¢), (3.26) can be separated into the ODEs

d?w

e + (w — 2qcos2¢)) ¥ = 0, (3.27)
d?H
dn?

— (w —2qgcosh2n) H =0, (3.28)
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where w is a separation constant and ¢ = — f?x?/4 is the Mathieu parameter. These
ODEs are the angular (3.27) and radial (3.28) Mathieu equations. The parameter
q is specified through the aquifer properties, element geometry, and p, while the
eigenvalues (w) are determined to make the angular solution periodic (see Ap-
pendix E). The solutions to (3.27) and (3.28) are angular and radial Mathieu func-

tions.

3.2.1 Elliptical special functions

Angular Mathieu functions The angular Mathieu equation (3.27) has a general peri-

odic solution, including both even and odd forms,

U, (1) = Acen(, —q) + Bsen (¥, —q), (3.29)

where A and B are constants and ce,, and se,, are the even (cosine-elliptic) and odd
(sine-elliptic) angular Mathieu functions (MF) of order n, argument ¢, and param-
eter —g. The eigenvalues (w in (3.27) and (3.28)) are different between the even
and odd solutions and even and odd orders; this results in four types of angular

solutions, described in Table 3.1. Figure 3.7 shows even angular functions for real

function eigenvalues major-axis minor-axis period
cean (1, —q) Qon symmetric symmetric T
ceani1(V, —q) bani1 symmetric anti-symmetric 2T
seont1(Y, —q) (211 anti-symmetric symmetric 21
seont2(, —q) bonio anti-symmetric anti-symmetric T

TABLE 3.1. Angular Mathieu function types (¢ < 0)

q. For finite ¢ and ¢, (3.27) has no singularities and neither do the angular MFE.
When ¢ = 0 (foreground in Figure 3.7), the functions reduce to their trigonomet-
ric counterparts. The zero-order even angular function, cey(¢;0), equals 1/v/2 by
convention; when ¢ # 0 it is oscillatory, but it has no zeros. As |¢| increases, the

functions become more oscillatory, but with the same number of zeros (McLachlan,
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FIGURE 3.7. First three orders of ce, (1), —q) as functions of both ¢ and —q

1947, §12); the zeros tend to cluster around £7/2 as |¢| — oo (as elliptic coordinates
approach Cartesian coordinates). Figure 3.8 illustrates the analogous behavior of
the odd angular functions, as functions of argument and parameter.

Because ¥, () = U,,(¢ + 27), (3.29) does not include the valid but non-periodic
second-kind angular MF; these rarely-used functions are known as fe,, (¢, ¢) and

ge, (¥, q¢) (McLachlan, 1947, §7).

Radial Mathieu functions The radial Mathieu equation (3.28) has a general solution

(corresponding to the periodic solution given in (3.29)) of the form

H,(n) = CKe,(n,—q) + DKo, (n, —q) + Ele,(n,—q) + Flo,(n,—q). (3.30)
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where C, D, F, and F are constants, le,, and lo,, are even (e) and odd (o) radial MF
of the first kind, and Ke,, and Ko,, are the even and odd radial MF of the second
kind. All the radial functions in (3.30) are of order n, argument 7, and parameter
—q.

The radial ODE (3.28) has a singularity at » — oo, as does the modified Bessel
equation (3.4). But unlike the radial ODE, (3.28) has no singularity at the origin.
The first-kind solutions to both the modified Bessel and radial modified Mathieu
equations increase exponentially as » and n — oo (see Figures 3.1 and 3.9). In
contrast, when making the transition from circular to elliptical coordinates, the
singularity at the origin (r = 0) is “spread out” over the line segment = 0; the
second-kind Mathieu functions become large, but not infinite at the origin, for ¢ #
0 (see Figure 3.10). Second-kind Bessel functions are singular at » = 0 for all integer
orders. To aid qualitative comparison with Bessel functions, the radial Mathieu
tunctions are plotted in Figures 3.9 and 3.10, using the physically-based coordinate
sinh(n) (Gutiérrez Vega et al., 2003); as |g| increases the first kind solution grows
even faster at large distance, while the second kind solution rises slower at the

origin, and goes faster to zero as 1 becomes large.
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3.2.2 Elliptical PDE solution

When recombining the ODE solutions (3.29 and 3.30) the even/odd cross-products
are discarded (since they correspond to different eigenvalues that may only be

combined through summation, see Table 3.1), leading to the general solutions of

(3.26) for R(q) <0

Z a, Ke,(n, —q) ce, (v, —q) + Z b, Ko, (n, —q) se, (v, —q),  (3.31)

[e.9]

Do, 0) =Y cnlen(n,—q) cen(1, —q +Zd Ton(n, —q) se (1, —q), (3.32)

n=0

where a,, b,, ¢,, and d,, are the coefficients to be determined. Equation 3.31 con-
tains only Ke,, and Ko,,, which are finite as 7 — oo. Similarly, (3.32) only contains
Ie,, and Io,, which have a continuous value and first derivative across n = 0 (the
focal line). Because R(q) < 0 these solutions are referred to as modified Mathieu

functions, of positive ¢ (analogous to how I,,(r) and K,,(r) can be considered mod-
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ified Bessel functions of real argument or related to non-modified Bessel functions
of complex argument (e.g. McLachlan, 1955, §6).

To simplify the expression for head matching on the boundary of the ellipse

the radial MF are normalized and the infinite sum is truncated, resulting in

_ Ke,(n, —q")
DL (n > no, ) = ap —————cen (Y, —¢"
e (77 - 770 1/}) nZ:O Ken(no, _q+) (@Z) q )
N—-1
Ko, (1, —q")
+ b, — ="~ se, (¢, —q"), 3.33
=" Koy (0, —¢7") W =7) 439
N—-1 Ie 7] )
a)* < 7 ~ cn n\'/, cen (1), — _
N—-1 IO 77 )
+ d, —" sen (v, —q7), 3.34
; Ton (10, —47) (¥, —q") (3.34)

where =+ superscripts on g indicate whether the coefficient involves aquifer param-

eters from inside (—) or outside (+) the ellipse n = 7.

The obvious difference between the circular element (3.9) and the elliptical ele-
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ment (3.33) is the “even” and “odd” radial functions in elliptical coordinates; radial
MF are neither even nor odd, they only share eigenvalues with the even or odd an-
gular MFE. A second difference is the appearance of both an argument (7 or ') and
a parameter, ¢=, in (3.33) and (3.34). Lastly, both radial and angular MF depend on
the coefficients of the PDE (through ¢ = —[fS;/(2K)]?), while sine and cosine in
(3.9) do not, allowing the simplification made by Furman and Neuman (2004) in
polar coordinates, but not in elliptical coordinates.

Two contour plots of head illustrating transient effects of a point source and
an ellipse of different material properties are shown in Figures 3.11 and 3.12. In
Figure 3.11 the head contours are nearly perpendicular to the boundary of the el-
lipse, although there is a very small component of flow into the ellipse. Att = 0,
head is zero everywhere; the point source causes mounding in the background
surrounding the low-permeability ellipse, but the head remains close to zero in-
side the ellipse (the steep contours indicate a large gradient, but K. = Ky, /1000,
therefore the flux leaving the ellipse is still very small). In the high K ellipse shown
in Figure 3.12, the gradient across the ellipse is very flat, due to its high permeabil-

ity.

1t 1
0.9
0.8
0.5} 0.7
> 0.6
0.5
or 0.4
0.3
0.2
035 -1 -05 0 05 1 15

FIGURE 3.11. Head due to a point source near a low permeability ellipse (K. =
Kpg/1000)
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FIGURE 3.12. Head contours due to a point source near a high permeability ellipse
(Ke = 1000Kpg)

3.2.3 Specified flux line source

An expression for a line source with a specified spatial distribution of strength
(along y = 0, from —f < z < f) is obtained from (3.31), using only cey, (7, ¢) due
to symmetry (see Table 3.1). Normalizing by the radial MF derivative evaluated at
n =0, Ke,, (0, —q), to simplify flux matching, gives

X - KeQn (77’ _Q)
o ine\’/y - n n y 7 —, 3.35
1 (77 w> 3:0 /82 C€2 <¢ Q) KGQn(O, _q) ( )

where f3,,, are the coefficients to determine. The BC for a specified flux line element

in elliptical coordinates is

_ - )\ o 1 a(i)line
(JBCW) = g(p)ﬁ = h_n an )

=m0

(3.36)

where ) is the constant flowrate [L?/T] for the entire line segment, 2f is the length
of the line segment, and ggc(7) is the normal flux [L]| due to the line source. The

metric coefficient (see Appendix B) is required to preserve the correct dimensions.
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Differentiating (3.35) with respect to 7, evaluating it at n = 0, and using orthogo-

nality over 0 < ¢ < 7 gives

- g(p)_ /OTr sin 1/} Ce2m dl/) Z ﬁ?n / Ce2n Q) Ce;m<¢7 _Q) d¢7 (337)

where ces,, (¢, —q) has period 7 (see Table 3.1). Due to the orthogonality of the
angular MF (x is complex conjugate), the integral on the right in (3.37) is 0 for
m # n and is defined as 7/2 for m = n (McLachlan, 1947, §2.19), reducing the

infinite sum to its (2m)™ term. The expression for the coefficients is

o = ~90)° [ cci (0, —a)sin e, 339
0
Expanding ce; . in terms of its defining infinite cosine series (E.8), and evaluating
the resulting integral leaves

- 2\ m+41 = r A(im)
Bom = g(p)—(=1)"* ;(—1) =@ (339)

where Agim) are matrices of Mathieu coefficients; their columns are eigenvectors
to the angular Mathieu ODE (see Appendix E). The terms in the infinite sum
quickly become small as r increases and the largest magnitude terms in AS™ oc-
cur surrounding the diagonal » ~ m (as ¢ — 0, AP™ becomes a diagonal matrix).
Substituting (3.39) back into (3.35) gives the final expression for a constant spatial

strength passive line source as

i = S Kes, (7, ~
B ¥) = 9() = 3 (-1 [Z<—1>’“1 - EW] cen, =) g =
= = (3.40)

This formulation of the transient line source is valid for any length line source
and can take on different time behaviors through convolution with specific g(p).
The head distribution due to the constant total flowrate line element expressed in

elliptical coordinates is illustrated in Figure 3.13. The line source, expressed as
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FIGURE 3.13. Head due to specified total flux line source as the ellipse 1y = 0

an ellipse of zero radius, is most useful as an active LI-AEM element, where the
strength is allowed to vary along the length of the line segment (not simply the
constant strength assumed in (3.36)). Analogous to the different point sources dis-
cussed in sections 3.1, 3.1.1, and 3.1.2, the elliptical line segment can be assumed to
have uniform strength (allowing the coefficients to be computed analytically, as in
(3.40)), or can be left more general (3.33). In the more general case, the coefficients
of (3.31) are computed at run time (an active element), adjusting to account for the

effects of other elements.

3.2.4 Uniform head ellipse

Following a procedure analogous to that above for a flux boundary condition, a
passive specified head boundary condition for an elliptical lake or constant head
line source is derived. Similarly beginning from (3.31), using only the even-order
even functions, but instead normalizing by Key, (79, —q), gives

_ > Keg,(n, —
(I)lake(n 2 No, 2/}) - Z a2nce2n(w7 _Q) % (341)

n=0

Specifying a constant head at the boundary of the ellipse leaves

i)lake<7] 2 No, ¢) = hBCKg<p> - Z a2nC62n(¢7 _Q)7 (342)

n=0
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which can be evaluated for the unknown coefficients using orthogonality of the

angular ME. Multiplying by ce}, (¢, —¢) and integrating over —m < ¢) < 7, leaves

gy — 1ECEIP) / e (10, —g) o (3.43)

™ —Tr
The integral can be evaluated by substituting the definition of ce},, (¢, —¢) in terms

of its defining cosine series (E.8). This gives

Qo = hocK9(p) / mi [ 23’">rcos(2w)dw, (3.44)
r=0

™

which evaluates to just the » = 0 term, leaving only
aam = 2hecKg(p)(~1)" [AF™]. (3.45)

Putting (3.45) back into (3.41) gives a passive specified constant head elliptical ele-

ment (e.g., a lake) as

o0

- _ m [ A @em]* Keon(n, —¢)
Prae(n = 10, V) = 2hpc K g(p) 2(—1) [A(()2 )] cen (¥, —q) m- (3.46)

A real-variable version of (3.46) was derived by Tranter (1951) for a heat conduc-
tion problem. Kuctik and Brigham (1979) applied this solution to flow to a circular
well in an anisotropic petroleum reservoir; the circle being distorted into an ellipse
by the transformation that rendered the aquifer properties isotropic.

Figure 3.14 shows an example of a line of constant head, simulated using an
ellipse with 1y = 0. If more than one specified head element is used, (3.46) will not

maintain a constant total head; active elements must be used in this case.

3.2.5 Elliptical source in unsaturated media

Appendix F gives the solution for flow from an ellipse due to the boundary con-
dition hgc = e 2% or hgc = e <=¥; the BC takes this exponential form from
the transformations used to linearize Richards’” equation. Appendix F is a self-

contained manuscript, and therefore has some repetition of definitions and uses



80

77 .
'.\‘\\\\
qamriisa
ia
R

FIGURE 3.14. Head due to constant head line source as the ellipse 7y = 0

slightly different conventions in places, because the work is an extension of a cir-

cular solution by Philip (1984).

3.3 Cartesian elements

Fitts (1989) modeled steady flow in aquifers using simple potential functions to
represent jumps across planes, following an approach detailed by Kellogg (1954,
§7). This approach is similar to the method of images (e.g. Lee and Henyey, 1974),
which is elegant for some simple geometries, but is not explored fully here.

While 2D Cartesian (i.e., rectangular) coordinates are the most familiar, due to
their infinite boundaries the system poses additional complications when used to
derive LT-AEM elements by EE. The governing equation (2.3) takes the form

% - 8827(12) — k2P =0, (3.47)
with the condition that the solution vanishes at + = o0 and y = 00, but no

periodicity condition. When separated using ®(z,y) = X (z)Y (y), (3.47) leads to
the two ODEs

d2X

=t n’X =0, (3.48)
d?y
—— —(n* =&)Y =0, (3.49)
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where n is a separation constant. In this case, (3.48) is the simple harmonic oscil-

lator and (3.49) is the exponential equation. The general solutions to these ODEs

are
X(z) = A cosnzx + B sinnz, (3.50)
Y(y) = CeV™ ="V 4 De VTR, (3.51)

where A, B, C, and D are constants. The trigonometric functions in (3.50) are the
eigenfunctions, which along with the boundary conditions determine the eigenval-
ues. For Cartesian coordinates, the ODEs and their solutions have no singularities
in the finite plane. The exponential solutions in (3.51) take the passive role in the
calculation. Due to the symmetry of Cartesian coordinates, the roles of X and Y
can be trivially switched; the choice is made based on the orientation of the match-
ing boundary. If the boundary is parallel to the z-axis, then X should have the
eigenfunctions (the simple harmonic oscillator), so that arbitrary boundary condi-
tions can be expanded.

For Cartesian coordinates the eigenvalue spectrum is continuous because the
boundary is infinite in length (—oo < z < o0). The spectrum of eigenvalues be-
haves quite differently, compared to the standard Sturm Liouville problem (e.g.,
circular or elliptical boundaries), described in section 2.3.2. Unless the integral
(and its back-transformation) can be found using the method of residues or other
complex integration techniques, the integral must be approximated asymptotically
or as a sum over a large interval.

The approach taken here is to truncate the range to be large but finite, thus re-
taining the integer eigenvalues and the simplicity that accompanies them. The
range is limited to —W/2 < 2 < W/2, with the condition that ®(—W/2,y) =
®(W/2,y) when the boundary is a matching boundary. This assumes that the net
effects of other elements is symmetric and centered on the line segment at = 0.

This severe limitation is due to the approximate nature of the approach taken here.
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A more correct and general approach would involve the entire infinite boundary

or, for a simple arrangement of a few elements, the method of images.
Normalizing the interval to 27 and forcing the eigenfunctions to be periodic

gives the following eigenvalues and eigenfunctions in x and corresponding pas-

sive exponential solutions in y

2
X,(x) = A, cos (27;/@) + B, sin ( 7;;;33> , (3.52)
onm\?
Yn(y) = CTL eXp :l:y i — K2 ) (353)
w
where n = 1,2,3,.... Since each eigenfunction satisfies the ODE and the bound-

ary conditions at x = £W/2, any sum of them will also. The coefficients are deter-
mined by matching boundary conditions along the boundary parallel to the z-axis.
For Cartesian elements local coordinates are defined so that y > 0, therefore
only the negative exponential is used for all n. This forces the exponentials to
automatically satisfy the condition that the effects of the line element die off at
large distance (y) from the line.
Recombining the solutions gives the expression for a truncated Cartesian ele-

ment as

_ o e ? 5
B(|a| < Wy > 0) =Y e V() =
n=0

2 2
X [an cos ( 7;[7;1;) + b,, sin ( %x)l . (3.54)

One drawback to these singular Cartesian elements is the requirement that the

solution be equal at z = £W/2.

3.4 Three-dimensional elements

While we do not develop or implement all the details of 3D LT-AEM elements here,

some related generalities are discussed. First, to use the EE approach, Helmholtz-
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separable 3D coordinates must be identified; the following references list the co-
ordinates with information regarding their solution: Morse and Feshbach (1953,
p.655-666), Moon and Spencer (1961b, p.1-48), Ben-Menahem and Singh (2000,
p-53), and Arscott and Darai (1981). Geometrically, the 11 3D coordinates in Ta-
ble 3.2 can be grouped into three categories: cylindrical, rotational and general.
Cylindrical coordinates are essentially the 2D coordinates already considered, but
extruded in the third dimension. Rotational coordinates come from rotating 2D
coordinates about an axis of symmetry. General coordinates cannot be derived
from 2D coordinates. Circular cylinder coordinates can be considered either cylin-
drical (extrude polar coordinates perpendicular to zy-plane) or rotational (rotate

Cartesian coordinates about x or y axis).

coordinate finite singular infinite modified Helmholtz
system boundary element boundary special functions
Cylindrical
Cartesian none plane plane exponential
circular none oo line circ. tube mod. Bessel
elliptical none oo strip ellip. tube mod. Mathieu
parabolic none half-plane parabola Weber
Rotational

sph. Bessel,

spherical sphere point cone associated Legendre
prolate spheroid line segment  hyperboloid spheroidal wave
spheroidal p & yp p
Spﬁzi)g?ial spheroid circ. disc hyperboloid spheroidal wave
parabolic none parabolic disc ~ paraboloid Tricomi
General
conical sphere point ellip. cone sph. Bessel, Lamé
ellipsoidal  ellipsoid ellip. disc ~ hyperboloids  ellipsoidal wave
paraboloidal none plane paraboloids Whittaker-Hill

TABLE 3.2. Helmholtz-separable 3D coordinate systems (sph. = spherical, mod. =
modified, circ. = circular, ellip. = elliptical)

Cylindrical systems appear in both Table 3.2 and Table 2.1, but they behave
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differently. In 2D both polar and elliptical coordinates have finite boundaries (the
circumferences of the circle or ellipse); these finite 2D curves become infinite 3D
surfaces when extruded parallel to the z-axis (perpendicular to the other two di-
mensions). All the entries in the cylindrical section can also have a plane as an co
boundary, but this is only listed under the Cartesian coordinate.

For 3D, the rotational coordinate systems take the role that the cylindrical ones
had in 2D; the point, line and circular disc are represented simply as the degen-
erate spherical, prolate spheroidal (cigar shaped), and oblate spheroidal (discus
shaped) coordinate systems, respectively. The main obstacle to overcome for the
non-spherical rotational systems is the evaluation of the special functions that arise
when separating the modified Helmholtz equation in these systems. Spheroidal
wave functions require analogous solution techniques to Mathieu functions. First,
an eigenvalue problem is solved to compute valid parameter values, then the func-
tions are evaluated using definitions in terms of infinite series of Associated Leg-
endre and spherical Bessel functions (e.g. Thompson, 1999; Aquino et al., 2002; Li
et al., 2002).

The ellipsoidal coordinate system is regarded as the most general 3D system;
any of the other 3D systems can be obtained from it by stretching, compressing or
translating coordinates (Arscott and Darai, 1981), analogous to how the 2D coor-
dinate systems in Table 2.1 can be derived from the 2D elliptical system. The gen-
eral coordinate systems are quite esoteric, rarely being used in application for the
Helmholtz equation, due to the difficult special functions that arise (Arscott, 1964,
§9-10). All 3D coordinate systems (especially rotational and general) have much
simpler special functions for the Laplace equation, where they see more applica-
tion. Applications include steady-state AEM (e.g. Fitts, 1991; Jankovi¢ and Barnes,
1999; Suribhatla, 2007), gravitational potential (e.g. Kellogg, 1954), and electrostat-
ics (e.g. Hobson, 1931; Moon and Spencer, 1961a; Sten, 2006).

The 3D cylindrical analogs to the 2D coordinate systems utilized already are
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briefly discussed, mentioning the special functions which arise and how bound-
ary matching changes between two and three dimensions. Some remarks on the
solvability of the coordinate systems in Table 3.2 is given in section E.1, in the con-

text of Mathieu functions.

3.4.1 Cylindrical coordinates

Cylindrical 3D coordinates are conceptually the most straightforward extension of
the 2D coordinates already given, because they only have an additional second-
order z derivative, otherwise keeping the 2D special functions and adding one
additional set, with some slight modifications due to the additional set of eigenval-
ues. The issues related to the transition of the eigenvalues from the integers to real
numbers, as the interval width — oo (section 3.3) also applies to the z-dimension

in all the cylindrical coordinates.

Circular cylinder The governing equation (2.3) in circular cylinder coordinates (see
Figure 3.15) is

9’0 10 10°¢ 9% -

e ) .

o2 Trar Trae o T (3:55)
with the condition that ® is 27-periodic in 6. Substituting the form ®(r,0,z) =
B(r)©(0)Z(z), this PDE separates into three ODEs (Moon and Spencer, 1961b,

p.15),

d (1dB 5 o M
— | =] = — | B = .
"L (Tdr) </{ +v +7’2) 0, (3.56)
W%—@n :0,
&2z,

a slightly different modified Bessel equation (3.4) and two simple harmonic oscil-
lators (SHO). The Bessel equation now involves two separation constants (n and

v) along with the physically-specified parameter, ). The SHO in terms of © is the



86

same as the 2D case, (3.3), while the SHO in terms of Z involves the the second

separation constant, v. Solutions to these ODEs take the form

FIGURE 3.15. Surfaces of constant circular cylindrical coordinates; cylinder is r =
0.6, rays are § = +%, +3% plane is z = 0.5.

©,,(0) = A cos(nf) + C sin(nh),

B, (r) = D1,(rvv? + k%) + EK,(rvv? + k?), (3.58)
Z,(z) = F cos(vz) + G sin(vz), (3.59)

where A, C, D, E, F and G are constants. Compared to the 2D case, there is an
additional set of eigenvalues to determine; n are controlled by periodicity, ©,(0) =
©,,(8 + 2m), the v eigenvalues are determined by the z-coordinate. As an example,
the solution inside a circular cylinder (assuming a finite z-interval to ensure integer

v eigenvalues) would take the form

O (r <rg, 0,2z, <2< 2)= f: f: L,(rB) [a, cos(nf) + by, sin(nd)]

n=0 v=0

X ¢, cos(vz) + d, sin(vz)]; (3.60)
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the doubly-infinite sum is characteristic of 3D problems, where multiple eigenval-

ues are used.
Elliptic cylinder The PDE in elliptic cylinder coordinates (see Figure 3.16) is

= k2O (3.61)

2 >0 PP] 9P

12 [cosh 2y — cos 24 [8772 * 8@/}2] * 022
with the condition that ® is 27-periodic in 1. (3.61) can be separated by substituting
the form ®(n,+,2) = H(n)¥(y)Z(z), leading to the ODEs (Moon and Spencer,
1961b, p.19)

d?w

KT + (w—2Gcos2y) ¥ =0, (3.62)
d?H .
g (w—2Gcosh2n) H =0, (3.63)
d2Z 9 9
E—i‘Z(V —H):O, (364)
where w is the separation constant associated with periodicity in ¢, § = — f1? /4 is

a Mathieu parameter that no longer involves the physically-determined parameter

r, but instead v, the second separation constant. The general solutions to these

FIGURE 3.16. Surfaces of constant elliptical cylindrical coordinates; f = 0.75, cylin-

der is 7 = 0.6, hyperbolas are ¢» = £%, +37, planeis z = 0.5.
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ODEs are

(1) = Ace,(¥; —q) + Bsen(v; —q), (3.65)
H,.,(n) = CKe,(n; —q) + DKo, (n; —q) + Ele,(n; —q¢) + Flon(n; —q),  (3.66)
Zny(2) =G cos <z\/ V2 — 52) + J sin (zx/ﬂ) , (3.67)

where the dependence on v in the two Mathieu solutions (3.65 and 3.66) comes
about through the definition of ¢ and A, B, C, D, E, F, GG, and J are constants.
The Mathieu functions are computed for a given value of the Mathieu coefficient
(see Appendix E), which in this case depends on v, requiring the eigenvalues in

the z-direction to be computed first.

3D Cartesian The simplest extension from 2D to 3D coordinates is in Cartesian,
where due to the unit metric coefficients, the problem does not change much. The
governing equation simply is

*d PO 9?9 _
52 Tt N0 (3.68)

with no periodicity condition. (3.68) is separated into the same ODEs given in
section 3.3, but with an additional set of functions and eigenvalues, analogous to

those above. The ODEs are

d2Xx
=+ n?X =0, (3.69)
d?y
d_y2 + V2Y = O, (370)
d*z
FIE Z(n? +1v° — Kk?) =0, (3.71)

where the X and Y parts of the problem are SHOs (with sines and cosines as so-
lutions) and the Z portion is the exponential equation, with £ exponentials as
solutions. Again, due to the symmetry of Cartesian coordinates, the roles of the

eigenfunctions can be switched trivially.
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3.4.2 Rotational coordinates

Though spherical coordinates are the only rotational coordinate system in common
use, prolate and oblate spheroidal coordinates could be developed to represent the
3D line segment and circular disc as singular elements, using an approach similar

to that for 2D elliptical coordinates (see Appendix E).

Spherical coordinates The PDE in spherical coordinates is (Ozisik, 1993, §4)
*d 200 1 0 { 661)} 1 0%0

el it — = k%D 3.72
or? * r Or * 72 sin 6 90 * 72 sin? 6 o2 " (372)

with the conditions that ® is 27-periodic in 1 and 7-periodic in . Some repre-
sentative surfaces in this coordinate system are shown in Figure 3.17; detailed il-
lustrations of this and all other coordinate systems discussed here are found in
the physics literature (e.g. Morse and Feshbach, 1953; Moon and Spencer, 1961a,b).
Substituting the form ®(r, 0, ¢) = B(r)©(0)¥(¢)) leads to the ODEs

d2w 9
d (1dB 9 5 1) 1 B
" (7’ dr) {/{ + (1/ +2> 7“2] B =0, (3.74)
d de n?
1-06° 1) - U =0. 7
T [( 9)d9]+[u(y+ ) 1_92} 0 (3.75)

These are the SHO (3.73), modified spherical Bessel (3.74), and associated Legendre

(3.75) equations. General solutions to these ODEs are

U, (1) = A cos(ny) 4+ C sin(ny), (3.76)
B,(r) = 1 (kr)+ E I_(n+%)(/ﬂ"), (3.77)
On.(0) = FPJ(0) + G Q(0), (3.78)

where A, C, D, E, F, and G are constants, P}}(f) and Q!}(f) are associated Legen-
dre functions (Abramowitz and Stegun, 1964, §8), and Ii(n 1) are the fractional-

order modified Bessel functions. Modified spherical Bessel functions of positive
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FIGURE 3.17. Surfaces of constant spherical coordinates; sphere is » = 0.6, cones

_ 7w 3 : T
are 0 = 7,7, planeis ¢ = 7.

fractional order are orthogonal to those of negative fractional order of the same
kind; K, 1 are possible, but not needed here. There are several other possible
separated equations and solutions for spherical coordinates, using simplifications

arising from different symmetries (Ozisik, 1993).

Spheroidal coordinates The two spheroidal coordinates are obtained from rotating
the 2D elliptical coordinate system about its major (prolate) and minor (oblate)

axes.

Prolate spheroid In prolate spheroidal coordinates (see Figure 3.18), the degen-
erate element is a line segment joining the two foci. Fitts (1991) simulated steady-

state flow to a 3D line source with this coordinate system. The modified Helmo-



91

FIGURE 3.18. Surfaces of constant prolate spheroidal coordinates; f = 0.75, prolate

spheroid is = 0.5, hyperboloids of two sheets are § = Z, 3% plane is ¢ = Z.

holtz equation is given as

1 0 08 26 0
thn— + — t0— 7
1 *e -

— 20
+f25inh2nsin293w2 i

with the condition that ® is 27r-periodic in ¢ and 7-periodic in 6. Substituting the
form ®(n, 0,+¢) = H(n)O(0)¥(¢)) leads to the separated ODEs

d*H dH 2
d_772 + coth nd—n — |:/£2f2 sinh®n +n(n + 1) + smVTn] H =0, (3.80)
d?e doe 2
10z + cot 9@ — [n2f2 sin?@ —n(n +1) + - ‘9} 0 =0, (3.81)
2
U
(:W + 120 = 0. (3.82)

Equations (3.80) and (3.81) are forms of the spheroidal wave equation, with solu-

tions analogous to angular and radial Mathieu functions, but comprised of infinite
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series of Legendre functions (Chu and Stratton, 1941). (3.82) is the simple har-
monic oscillator. These functions and their properties are summarized in Thomp-
son (1999) and Aquino et al. (2002), and given in great detail in Morse and Fesh-
bach (1953), Arscott (1964), and Li et al. (2002).

Oblate spheroid Oblate spheroidal coordinates (see Figure 3.19) have a circular
disc as the degenerate element of the system; the two foci of the 2D ellipse form a

ring when rotated about the minor axis of the ellipse. A circular hole in a confining

FIGURE 3.19. Surfaces of constant oblate spheroidal coordinates; f = 0.75, oblate

spheroid is n = 0.5, hyperboloids of one sheet is § = %, 3%, plane is ) = 3.

layer or 3D flow from a circular recharge area could be simulated naturally using

this coordinate system. The governing equation is given as

1 0?°® 0d  9*® 0P
hp= 4+ 42 72 .
f? (cosh® n — sin®§) | On? - tanh) on + 002 eotd 00 (383)
1 fRX) .

+ =KD,
12 cosh? nsin? § OY? "
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which has the same periodicity as (3.79) and the two systems are clearly very sim-
ilar; more specifically, one can go from one to the other by transformations of the
form f = if and n = in. Similarly substituting the separated form leads to the
following ODEs

d?H dH 2
ap + tanh nd—n — {/{2]”2 cosh?n +n(n+1) — C():T?]:| H =0, (3.84)
d?e de 2
1 + cot 0@ + {ﬁgfg sin?@ +n(n+1) — sirV129} 0 =0, (3.85)
d?w
d_w + VQ\I/ = O, (386)

which have analogous solutions as the prolate spheroidal coordinate system.

3.4.3 3D summary

As avenues for extending LT-AEM to 3D problems, cylindrical and spherical ge-
ometries would be conceptually straightforward. Spheroidal (prolate and oblate)
coordinates would be useful geometries to implement (the line segment and cir-
cular plate are degenerate elements in these systems), but requiring development
of solutions analogous to that done for Mathieu functions here (see Appendix E).
Cylindrical coordinates may have the simplest special functions, but their infinite
boundaries lead to continuous eigenvalue problems, rather than discrete (integer)
eigenvalues, and therefore one must either deal with convergence issues due to
truncating or intersecting boundaries or deal with integrals over the continuous
eigenvalues. The parabolic and general coordinate systems do not appear to be
readily solvable or useful for the modified Helmholtz equation in hydrologic prob-

lems.
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Chapter 4

DISTRIBUTED SOURCES

Source terms often arise because a process is not explicitly simulated, therefore it
must be represented as a lumped or distributed source. Sources may arise because
we ignore the details of a physical, chemical, or biological process, representing
the net effect as a source term. Additionally, a source can be used to account for
an entire spatial dimension; boundary conditions with respect to a dimension not
simulated lead to distributed sources.

Both fluid transfer between matrix and continuum (i.e., dual-domain behavior)
and the effects that inertia have on the momentum balance (i.e., Darcy’s law) are
distributed sources arising from truly distributed physical processes.

In 2D, distributed sources also arise from boundary conditions that cannot be
handled due to the lack of an explicit third dimension. Surface recharge, delayed
yield from the water table, and leakage from adjoining layers are all boundary
conditions along the top or bottom of an aquifer; in 2D they become distributed
area sources. Though 3D representations are more physically realistic, often 2D
approximations are adequate or all that are feasible to solve. Most of the source
terms considered here are of the later sort; they would not carry over to a 3D LT-
AEM problem.

Elements that represent finite areas or are associated with the entire domain
can be governed by PDEs that differ from (2.3) either simply by material proper-
ties (which changes the definition of «) or the presence of distributed source terms.
The LT-AEM sources dealt with here are all linear and can either come from a ho-
mogeneous (a source linear in ®; non-linear sources could also lead to a homoge-

neous PDE, but cannot be handled by LT-AEM) or inhomogeneous PDE (a Poisson
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term). Homogeneous LT-AEM source terms are dealt with using the EE solutions
derived in Chapter 3, since (2.3) contains a term linear in ®; additional terms can be
thought of as simply changing the definition of x*. Inhomogeneous source terms
(including ®, in (2.2)) must be expressed in terms of a particular solution, requiring

a modified approach.

4.1 Inhomogeneous sources

2D area sources (e.g., circles, ellipses, or the entire domain) can be used to rep-
resent recharge (precipitation and infiltration) or discharge (evapotranspiration),
where the source term is not proportional to aquifer head or drawdown. For
steady AEM problems this leads to the Poisson equation (e.g. Haitjema and Kel-
son, 1996; Bakker, 1998), for transient flow problems it leads to a Poisson term in
the modified Helmholtz equation (e.g., the initial condition in (2.2)). Kuhlman and
Neuman (2006) showed that an impulse area source, applied at t = 0, can be used

to represent a non-zero initial condition.

4.1.1 Decomposition of potential

Adapting the method outlined by Strack (1989, §37) for steady-state analytic ele-
ments, specified area flux elements are derived in Laplace space by decomposing
into homogeneous and particular solutions, separately considering ®, inside and

outside of an area,

V20, — k*®, = 7(x, p) inside, 4.1)
V20, — k*®, =0  outside, (4.2)
where 7 is the strength of the area flux that, in general, can be a function of both

space and time. The PDE used inside the area element has the same form as the

Laplace transformed diffusion equation, before the simplification of zero initial



96

condition (2.2), with 7 = —®(/c. The total discharge potential is defined as a sum
of two functions,

b=, + by, 4.3)

where @, is the homogeneous solution for which elements were derived in Chap-
ter 3. ®, is identically zero outside the element, and satisfies the above PDE inside;
it is any particular (inhomogeneous) solution. The combination of these two func-
tions is used to make ® match correctly at element boundaries (there may be a
jump in o1 if there is a change in K).

To ensure continuity in h, the jump in ®,, across the circumference of the circle

is proportional to the jump in @,
p _ 0B

P
=_t "k 44
K- K+t K- (44)

The homogeneous solution ®; is the total discharge potential due to all partici-
pating elements (&} = ®** 4 37 &). The modified form of the head matching

condition (2.27) for element n with a passive area flux is

1 Nypg+ 1 Nypg—
Fn+ K _ FN— F3 Tk
= |® +3 % == |2 +0,+ Y D (4.5)
W W

0 70

similarly, the modified form of the normal flux matching condition (2.29) would

Nog+ Nig+

n- (—ln+ + Z (—lkJr =n-|q@" + ap + Z (—lk+ (46)
k=1 k=1
k#n k#n

T0 T0

Particular solutions can be found using several approaches; for some simpler dis-
tributions the particular solution may be found by inspection. The simplest non-
trivial form which @ can take, so that @ still satisfies (4.2), is that of a recharge rate
which is constant in space but variable in time. The particular solution for constant

areal flux is simply

®, = —9(19)%, (4.7)
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where 7 is a constant source strength, and g(p) represents the area source time
variability. In this simple case, since ®, is constant in space, the modified normal
flux matching (4.6) reverts to its original form (®, does not contribute to normal

flux), and only the head matching equation must be modified.

cross—section time=1.25x10"° time=1.25x10~*

(b)

(a)

1.25x107°

—————

FIGURE 4.1. Non-zero initial condition in two circular regions; cross-section (a)
located on dashed line in (b); (c) contours from both LT-AEM and MODFLOW.

Figure 4.1 illustrates a constant non-zero initial condition applied over a cir-
cular sub-area of a finite circular domain with an outer no-flow boundary. Panel
(a) is a cross-sectional radial slice through the domain, illustrated as a dotted line
in panel (b). Panel (c) shows a comparison between MODFLOW (McDonald and
Harbaugh, 1988) and LT-AEM in the upper right quadrant of panel (a), correspond-
ing to the second curve in panel (a); the contours are essentially identical.

The general time variability term, g(p), in (4.7) makes this relatively simple so-
lution quite flexible. For example, barometric pressure or tidal fluctuations can be
decomposed into key sinusoidal components, then loaded directly onto the aquifer
using (4.7) with g(p) composed of a superposition of several Laplace-transformed
sinusoids. For barometric fluctuations, a thick vadose zone can also be accounted
for by exponentially dampening the sinusoidal components, to account the non-
instantaneous flow of air through the subsurface (Weeks, 1979). Accurate account-

ing for observations of these fluctuations in open boreholes requires applying a
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corresponding loading condition at the wellbore.

When more complex particular solutions are needed, they can be derived us-
ing the variation of parameters method, which integrates two known solutions to
the homogeneous problem, which could be eigenfunctions (Morse and Feshbach,
1953, p.529). Lastly, Strack and Jankovi¢ (1999) developed an area source for the
Laplace equation in a general functional form, to allow matching quite arbitrary

2D distributions of Poisson terms.

4.2 Homogeneous sources

Homogeneous distributed source terms arise from effects that are proportional to
head or drawdown in the aquifer. For example, transient leakage from adjacent
aquitards (§ 4.2.1), delayed yield in unconfined systems (§ 4.2.3), and dual domain
behavior (e.g. Moench, 1984) all lead to homogeneous source terms that can be
handled with the same techniques LT-AEM uses to handle transient effects.

In the AEM literature, Bakker and Strack (2003) arrived at the Helmholtz equa-
tion by considering steady multi-aquifer flow. Bakker and Nieber (2004a) also
reached this governing equation by from linearizing steady unsaturated flow. Fur-
man and Neuman (2003), Bakker (2004c), and this dissertation also arrive at the
Helmholtz equation from applying an integral transform to the diffusion equation.
de Glee (1930) solved the problem of steady flow to a well in a leaky aquifer, re-
sulting in a solution of the form Ky (), the fundamental solution for the Helmholtz
equation. Although the modified Helmholtz equation is typically not considered
one of the fundamental equations of groundwater flow, it arises in numerous situ-
ations where source terms in homogeneous PDEs are considered. The methodol-
ogy used here to solve the transient flow problem can easily be extended to handle
these other terms, with little or no change to the solution methodology, presented

in Chapter 2.
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4.2.1 Leaky aquifer source term

An example of a 2D homogeneous source term is leakage from an adjacent un-

pumped aquitard, following the approach of Hantush (1960) (see Figure 4.2).

e Ve

- //

Z=b2

case | case 11

aquitard 2
aquifer

I
o

Vzci)l—li',%ci)l-l—G_!:O b =1

FIGURE 4.2. Leaky system conceptual diagram

Beginning again with (2.1) but keeping the source term, G, when converting to
¢ and taking the Laplace transform; the aquifer flow equation with a distributed
source is

V2®, — k20, +G =0, (4.8)
where variables with subscript 1 pertain to the aquifer and 2 or 3 will relate to
an adjacent aquitard. Assuming vertical flow in the overlying aquitard (common
when K; > Kj), the flow equation in the aquitard simplifies to the ODE

d?®,
dz?

- Iﬁgci)g = 0, (49)

assuming a zero initial condition in the aquitard. Head matching at the aquifer-

aquitard interface (z = 0) gives the condition

Dy(z = 0) = Ka®1(x)/ K1, (4.10)
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where the aquifer PDE is 2D (z and y) and the aquitard ODE (z) is 1D, being orthog-
onal to the aquifer problem; a different aquitard ODE is posed at each x location.
At the far side of the aquitard (z = by) there is a no-drawdown condition, ®; = 0
(see case I of Figure 4.2). The solution to (4.9) that satisfies both of these conditions

is

- Ky®
Dy(2) = [2( L [cosh Koz — coth Kkoby sinh kyz] . (4.11)
1
Differentiating (4.11) and evaluating it at = = 0 gives the vertical flux from the
aquitard at the interface, B
~ 1 [0D,
G=—|—-— : 4.12
bl |: 0z :|z—0 ( )
Substituting this into (4.8), the aquifer flow PDE becomes
2F 2 Ky T
V®, — |K] + Ko coth koby | &1 = 0. (4.13)
b1 K1

This PDE can be solved using the same elements from Chapter 3, because the ef-
fects of the neighboring aquitard contributes the second terms in brackets in (4.13),
which is a constant, and therefore only redefines x* in (2.3). Since the aquitard
ODE is linear with homogeneous initial and boundary conditions, superposition
is valid.

Exploiting the axial symmetry in this case, Figure 4.3 shows dimensionless re-
sults; see definitions in equation (3.15). The curve labeled E,(tp/4) represents the
non-leaky Theis (1935) solution (2.22), shown for comparison. Less drawdown is
seen in the leaky aquifer, because the leaky layers supply water to the aquifer at a
rate proportional to the level of drawdown.

A similar procedure can be used to develop leaky source elements with differ-
ent upper aquitard BC; the PDE for a no-flow BC at z = b, is (case I, the upwardly-

deviating curves in Figure 4.3)

_ K _
Vi, — /f% + /-ﬁngl—[?l tanh keby | &1 = 0. (4.14)
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leaky case II
1L .
10 F B (tp/4) caky b 7 7
[ X :
- g - ]
< 0 [ P b=l leaky caseI<
10° 3
s b,=1/10 ]
10'1 " 1 1 1 1 " 1 M
100 102 10" 10° 10 10" 10"

FIGURE 4.3. Leaky response at » = 1 due to point source, comparing results
for different aquitard BC and b, with the non-leaky E; solution; Sy3/Ss; = 100,
Kl/KQ - 5

Case 1II is limited by the assumption of vertical flow in the aquitard to early-time
flow. Significant horizontal gradients will develop once drawdown has reached
the upper boundary (Malama et al., 2007), which this simplified model cannot
properly account for.

For the case by — o0, coth kb in (4.13) and tanh k9b, in (4.14) both simplify to
unity (the middle leaky curve in Figure 4.3), and the PDE then becomes

_ K. _
V2P, — |:/~€% + @ﬁ} d, = 0. (4.15)

The effects of the boundary condition at z = b, are only observed at later time
when the three curves separate (the thin curves in Figure 4.3 represent an aquitard
1/10 as thick as the heavy curves, they deviate at an earlier time). The effects of
two aquitards (above and below) can also be included, as done by Hantush (1960).
For example, the PDE for a system consisting of a type I aquitard above (layer 2)
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and a type Il aquitard below (layer 3) is

_ K K
V2P, — /{% + /{2—2 coth koby — K3 3

tanh k3bs | ®; = 0. 4.16
b K, b K, ann K3os 1 ( )

This model produces homogeneous source terms in the aquifer PDE for aquitards
which are immediately adjacent to the main aquifer. Using the model of Hantush
(1960), four or more layer system do not produce solutions which simply depend
on the drawdown in the main aquifer. Multi-aquifer systems are addressed in a
more general manner in section 4.2.2.

The finite wellbore (3.14) and wellbore storage (3.20) type wells can just as eas-
ily be solved for this type of problem. Moench (1985) developed a leaky solution
for large-diameter wells, not unlike the single-well solution developed here. A ma-
jor advantage of the LT-AEM approach is that these elements may be combined,

using boundary matching to solve more complex geometries.

Leaky source examples The leaky PDE (e.g., (4.13), (4.14), or (4.15)) could be solved
for the entire domain, as was done in Figure 4.3 for a pumping well in an infinite
aquifer, the leaky PDE can be confined to a region bounded by circles or ellipses,
or the complementary infinite domain with circular or elliptical regions cut from
it. The boundary matching approach used here is what allows different PDEs to
be solved in different regions; superposition of solutions to different PDEs is not
allowed.

Figures 4.4 and 4.5 show a situation where a well is pumping from a confined
aquifer, but there are six “holes” in the confining layer, separating the confined
aquifer from another, unpumped aquifer. The two aquifers are initially in equi-
librium with each other (there is no leakage), but as the main aquifer is pumped,
leakage occurs through the six holes, assuming the rest of the aquitard is imperme-
able. Figure 4.6 illustrates that this spatially-distributed leakage falls between the

confined behavior and fully-leaky behaviors, as would be expected. The geometry
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FIGURE 4.4. Contours of head due to a point source in a system of leaky (type I)
circles in a confined aquifer, at ¢ = 0.04

of the leaky circles causes the drawdown at point A to be less than point B (except
at very late time); despite the fact that A is closer, B is not surrounded by leaky
sources. For comparison, the sources for the uniformly leaky case are solid lower
lines.

Figure 4.7 shows drawdown due to all three types of leaky systems at two ob-
servation locations relative to a specified total flowrate line source (3.40) located
at —0.75 < z < 0.75, y = 0. The line source could be used to model the effects of
a river on an aquifer with a leaky aquitard immediately below it. At larger dis-
tance the time-drawdown plot for the line source more closely resembles the same
plot for the point source solution in Figure 4.3. In this example, K/K; = 1000,
S/Sy = 0.001, b, = b = 1. The effects that the different parameters and aquitard
boundary conditions have on the drawdown due to a line source in a leaky aquifer
is analogous to the response due to a point source. One significant difference be-
tween the two is that the drawdown at the line source (n = 0;—f <z < f,y = 0)

is finite, while drawdown at a point source (r = 0) is not.
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FIGURE 4.5. Contours of head due to a point source in a system of leaky (type I)

circles in a confined aquifer, at ¢ = 0.1

10 .
1()05- E, (t/4)
z )
AP
10! F o >
A &
(@) D’
A
IS S
5) /S
10'25'
0% 100 102 107! , 10° 10! 10
t/r

FIGURE 4.6. Drawdown through time at points A and B in Figures 4.4 and 4.5.

Uniform curves represent the leaky solution of Hantush (1960).
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FIGURE 4.7. Drawdown due to line source in leaky aquifer at 2 observation loca-
tions; on the source (z = 0, y = 0) and away from the source (z = 0, y = 4)
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4.2.2 Layered system solution

Transient multi-aquifer systems have been considered by Neuman and Wither-
spoon (1969), Hemker and Maas (1987), Li and Neuman (2007), and Malama et al.
(2008). We follow the general transient matrix formulation of Hemker and Maas
(1987) and Maas (1987), but we do not limit the solution to radial flow to a single
well in the multi-layer system as they did. The matrix formulation (Maas, 1986) is
valid for any number of layers (even n — oo); the boundary conditions at the top
and bottom of the system (see Figure 4.8) are later imposed on the general solution.
The multi-aquifer transient problem does not result in a homogeneous governing
equation in terms of a single potential. Despite this difference, this material is
presented in this chapter because the matrix techniques used here do result in an
system of uncoupled equations for a modified potential; each uncoupled aquifer
then behaves like the other homogeneous sources described in this chapter. The
final solution is found through a matrix-vector product back-transformation.

Extending the aquifer-aquitard system of section 4.2.1 to n aquifers and n + 1
aquitards (see Figure 4.8) is relatively straightforward, resulting in a matrix equa-
tion for ®; and @/, the discharge potential in the ™" aquifer and aquitard respec-
tively.

Similar to the leaky problem, flow in aquifers is assumed to be 2D (horizontal
x, y), while flow in aquitards is assumed 1D (vertical z). The governing equation
in the i aquifer is

V20, — k2®; + Gy — Gy = 0, (4.17)
i T i

where the source terms due to the aquitards above (1) and below (|) aquifer i are

. 1 09,
G = ~ 221 (4.18)
bi ﬁzi 2=0
_ 1 0%,
Gy = 75 : (4.19)
i UZi+1 zip1=bl
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no drawdown '

‘ Aquitard 1 K1, S ‘
Aquifer 1 K1, Ss1
‘ Aquitard 2 K3, S52 ‘
Aquifer 2 K3, Ss2
by
Pumped Aquifer % %
‘ EE
Zn T
Aquifer n Kn, Ssn
Aquitard n+1 Kpt1,Sans1
no drawdown

FIGURE 4.8. Schematic of layered system, after Hemker and Maas (1987)

primed quantities are related to aquitards, unprimed ones are related to aquifers.
Since the aquifers have no z-coordinate, unprimed z; is the local coordinate across

the aquitards (0 < z; < 1}). 1D flow in the i" aquitard is given by the ODE

LB,
FEe KPP, =0, (4.20)

with a general solution of the form
®/(z,p) = Bl cosh zk} + 8 sinh 2k, (4.21)

where ' and ¢’ are coefficients to be determined from boundary conditions at the
boundaries between aquifers and aquitards.

Up to this point, the development is identical to that for the leaky problem, but
generalized to multiple aquifers. In the leaky system, simple boundary conditions
were applied at the far side of the adjoining aquitard (no drawdown or no flow),
resulting in simple solutions to (4.21) and therefore simple source terms (4.18 and

4.19). The leaky solutions only depended on the drawdown in the pumped aquifer.
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By considering the head in the other aquifers to be a dependent variable, a system

of equations for potentials in all the layers must be solved simultaneously.
Performing head matching at the top and bottom of each aquitard to determine

the coefficients 5 and J; in (4.21), and taking the derivative of (4.21) to determine

the vertical flux at the aquifer/aquitard interface leads to

- KK, - KK coth (kb)) -

Gz‘ - LA (I)z'— - Gl e (I)i, 422
T biKi—l sinh (li;b;) ! szz ( )

~ K 1Kiyq coth (’%Hbgﬂ) = Ki1Kig B (4.23)
H binL'+1 o ble sinh (H;Jrlb;Jrl) " '

substituting these into (4.17) and expressing the problem in matrix form leads to
Ve - AP =0 (4.24)

where A is a tridiagonal matrix that accounts for the leaky source terms (4.22 and
4.23) that include the effects of adjacent aquifers and transient effects of the current
aquifer (second term in (4.17)) and @ is a vector of the discharge potentials in all

the aquifers. A characteristic section of A is

0 Aicrie Aiciicn Aimiy 0 . e
0 Ai,i*l Ai,i Ai,iJrl 0 R (425)
0 Ai1i Aigrinn Aivive 0

where the terms in row i of (4.25) are

1,0

K
Ajiy = — biK;chch (K} (4.26)

K'k! K K
A= bZI’;l coth (kb)) + ’Z;L'I—K%csch (K biy) + K7, (4.27)
K! !
Aijiy1 =— %fijl coth (7, 1b1) - (4.28)

The approach taken here is to decouple the aquifers by substituting the eigenval-

ues and eigenvectors of A. This allows their solution to be computed using the
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standard scalar techniques already given. For a problem with 5 or more aquifers
this leads to a numerical solution; this limitation is related to the fact that there is
no algebraic solution to the roots of a polynomial of higher than fourth order. This
numerical-only solution could be considered to degrade the elegance of the other-
wise analytic (in Laplace space) LT-AEM. The approach is useful though, because
it extends 2D LT-AEM to multi-aquifer systems that would otherwise need to be
handled using 3D models.
Substituting A = SAS™! into (4.24), gives

V2® —SAS'® =0 (4.29)

where S is an orthogonal matrix (that is guaranteed to have an inverse) composed
of the eigenvectors of A arranged as columns and A is a diagonal matrix of the cor-
responding eigenvalues of A (e.g. Strang, 1988, §5.2). Pre-multiplying both sides
of (4.29) by S~! and defining the new potential ¥ = S~'® leaves

VW — AV =0, (4.30)

which is a set of n uncoupled modified Helmholtz equations, because A is a diag-

onal matrix of eigenvalues,

VQ\Ill - )\1@1 == O
V20, — MUy =0 (4.31)

Once the eigenvalues of A are computed, the solution for ¥; in each layer can be
computed independently, then they are converted back through the matrix-matrix
multiplication

& =S¥ =SS"'®=1®, (4.32)

where I is the identity matrix.
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The approach of Hemker and Maas (1987) only considers aquifer that “com-
municate” through leaky layers between them, this always leads to a tridiago-
nal A. The same eigensolution decoupling technique used here could be applied
to multi-aquifer systems with other possible inter-aquifer connections (e.g., un-
pumped wells screened across multiple aquifers) or completely different physical
arrangements. These alternative connections between aquifers would lead to off-
diagonal A terms, but the approach would remain unchanged.

The solution presented by Hemker and Maas (1987) was for radially symmetric
flow to a well, but any of the LT-AEM elements derived in Chapter 3 could be ap-
plied to this system of equations, even different source terms (e.g., surface recharge
or the unconfined source considered in section 4.2.3) or elements (e.g., line source
on surface, point sources in some of the aquifers below) in the different aquifers
of the system. Due to linearity, superposition of compatible systems is valid (i.e.,
layers have zero initial conditions and the same properties in each layer). Bakker
and Strack (2003), Bakker (2004a), and Bakker (2006) have developed similar AEM
solutions to multi-layer problems for steady-state flow.

System boundary conditions simply redefine the first and last rows of A, as
were done for the leaky case. No-drawdown (left half of Figure 4.8) or no-flow
(right half) conditions may be specified at the top of aquitard 1, or the bottom or
aquitard n. The thickness of the extremal aquitards may also be made very large,

with similar simplifications to (4.15).

4.2.3 Boulton’s delayed yield source term

Boulton’s delayed yield solution (1954) is an empirically-derived model of the ef-
fects that delayed yield has on flow in 2D aquifers. Herrera et al. (1978) showed
that while the general 2D integro-differential model for an unconfined aquifer is

approximate at very small time and small radial distances from a pumping well, it
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can be used successfully elsewhere. Herrera et al. (1978) give a generalized form

of Boulton’s equation for flow in the aquifer as
0P L oo
KV?® =S,— + 8, / —1|  B(r,t—7)dr, (4.33)

0

t=T1

ot ot

where S, is dimensionless specific yield and B(r, ¢t — 7) is a convolution kernel; for

a(t—r)

simplicity Boulton chose B(t — 7) = ae*"7). The fitting parameter &, [T~!], does
not have direct physical meaning. To produce a solution that depends on physical
parameters, Herrera et al. (1978) used a more complex convolution kernel,

_ n(t—T
B(t— 1) 22 —1+02 e~ =), (4.34)

where o = /S/S,, 7 = K.p2/(bS,), K. is vertical aquifer hydraulic conductivity,

bis aquifer thickness and p,, are roots of the transcendental equation

pn = tan(p,o) (% — O’) . (4.35)

Equation 4.33 is (2.3) with an extra time convolution term of the form (2.18),
which is equivalently multiplication of the image functions in Laplace space (§ 2.4).
Both kernels have transforms of the type £ {B(t — 7)} = £/(£+p). Assuming a zero

initial condition, the transformed flow PDE for Boulton’s (1954) kernel is

_ So a 1.
V2P - [/8 n %pdjt—p} & =0. (4.36)

Analogously, the transformed PDE using the kernel of Herrera et al. (1978) is

V2P — d=0. (4.37)

yp
Z -1+ 02)(% +p)

Either Boulton’s empirical & can be equated with physical parameters by compar-
ing it to the form of (4.34), or the more complex kernel of Herrera et al. (1978) with
physically-based parameters can be used. (4.34) gives a more realistic solution at
small time, but involves solving for the roots of a non-linear equation and a poorly-

converging infinite series. The simplest approximation (when S; = 0, p; = 3 and
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10.0 |

1.0 ¢

FIGURE 4.9. Drawdown due to a point sources (3.14) for Boulton’s unconfined
PDEs at r = 1 through time

pp1 = 0) leads to the correspondence & = 3K./(S,b). In Figure 49 r = b = 1,
therefore 8 = r’ K, /(Kb?) is proportional to the aquifer anisotropy ratio.

The delayed yield source term can also be applied to the line element (ellipse
with ny, = 0), potentially representing a horizontal well or a recharging river (ig-
noring the non-linear effects of the vadose zone). In Figure 4.10 the curve of draw-
down observed at x = 0, y = 0 (on the line source y = 0, —0.75 < z < 0.75) shows
the most drawdown and is the least shaped like the curves for an unconfined point
source (see Figure 4.9) due to the geometry of the source. As the observation point
moves away from the line (as y increases), the geometry effects becomes smaller;
at large distance, we expect the line and point sources to behave similarly. Note
that in contrast to the point source, which produces infinite drawdown at » = 0,
the line source produces finite drawdown at n = 0 (y = 0 in Figure 4.10).

For comparison with the point source shown in Figure 4.9, Figure 4.11 illus-

trates a confined line source using Sg (the upper curve), one using S, (lower curve),
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L B L L L L |
y=0.25 away from line source

FIGURE 4.10. Drawdown through time due to a line source (f = 0.75, S, = 0.25,
S, =5x 1074, 8 = 1/100, z = 0)

and the unconfined line source. Different values of 5 represent different K, in the
aquifer; aside from the source geometry, the solution is identical to the unconfined
point source.

Boulton’s model is used here for the unconfined flow problem to illustrate how
an integro-differential equation with time convolution can be handled using LT-
AEM techniques, rather than to advocate its use as the most physically realistic
model of unconfined aquifer flow.

The leaky (§ 4.2.1) and unconfined solutions can be combined. For a well in
a shallow unconfined aquifer, with a leaky aquitard below; the governing flow

equation would be

_ Ky,  2S,p & Vn _
V20 — |Kk?+ + = o =0. 4.38
SRR O R D oy ) e (4.38)

n=1
using the leaky (4.15) and unconfined (4.37) solutions already given. This illus-

trates the ease with which new solutions may be constructed in Laplace space,
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FIGURE 4.11. Drawdown through time due to a line source for different values of
B (y = 1), comparing with early and late confined line sources.

allowed by the flexibility of the numerical inverse transform. This type of ar-
rangement (2D unconfined aquifer flow, 1D aquitard flow) has been recently in-
vestigated by Zlotnik and Zhan (2005), a special case of the more general 3D flow
solution of Malama et al. (2007).

4.2.4 Source term from Darcy’s law

Higher-order time derivatives in the governing time-domain PDE can also add
a homogeneous source term to the transformed PDE. For example, consider the
more complete transient form of Darcy’s law, averaged from or based on analogy
with the Navier-Stokes equations (Bear, 1988, §4.7), given as

q=-— (th + r%l) , (4.39)

where 7 is a relaxation parameter [T] that is very small, therefore the q time deriva-

tive term is usually neglected. Lofqvist and Rehbinder (1993) define 7 = K/(ng),
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where n is dimensionless porosity and g is the acceleration due to gravity [L/T?].
Nield and Bejan (2006, §1.5) contend that 7 = pc,, where p is the fluid density and
c, is the acceleration coefficient tensor that depends on the geometry of the largest
pores. While details related to the physical significance of 7 may be under con-
tention, in general it is believed to be related to the amount of time it takes for the
system to become diffusion-dominated.

Applying the Laplace transform to (4.39) gives

q=—[V®+7(pa—qo)] (4.40)

where q is the initial flux condition. Assuming this is zero, solving for q, and

incorporating this into the Laplace-transformed mass balance expression
_ px
~V-q= "% (4.41)

leads to the governing flow equation that incorporates the additional transient ef-

fects,

1 _ _
V- [ V(ID] — k2D = 0. (4.42)
This PDE can be written as
V20 — k14 7p] ® =0, (4.43)

which is again of similar form to (2.3), (but with p? in the wave number, repre-
senting 9?/0t?) allowing its ready solution with existing LT-AEM techniques (see
Figure 4.12). (4.43) in the time domain is

V20 = % {%—T + 788273)] ; (4.44)
which is the damped wave equation. The diffusion equation is a simplified form
of (4.44) (as 7 — 0). For problems governed by the wave equation, pulses al-
ways propagate at finite speed (e.g., see steep leading edge of s surface in Fig-

ure 4.12b), while the diffusion equation allows changes to propagate at infinite
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FIGURE 4.12. (a) Time drawdown at » = 1 and (b) distance drawdown at ¢ = 0.01
for finite radius point source ((3.14), r,, = 0.01) considering inertia effects.

speed (Vasquez, 2007); although the changes are infinitesimally small, and hence
tolerated. In the time domain, 7 is attached to a 9*®/9t* term, which only becomes
significant when there are rapid transient changes (Lofqvist and Rehbinder, 1993).

The effect of not considering this “inertia” term, in situations where it may be sig-
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nificant (e.g., the gravel-packed region surrounding a pumping well), may lead to

slight over-estimation of storage parameters using diffusion (see Figure 4.12a).
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Chapter 5

NUMERICAL INVERSE LAPLACE TRANSFORM

Analytic techniques for evaluating Mellin’s integral (A.4), including the method
of residues, are very problem-specific and may only yield a solution in the form
of an integral or a slowly converging infinite series; using a numerical £~! allows
flexibility and generality (Cohen, 2007).

For all numerical inverse Laplace transform algorithms, a vector of image func-
tion values are computed for required values of p, then the object function is ap-
proximated from this vector. Furman and Neuman (2003) utilized the doubly-
accelerated Fourier series method of de Hoog et al. (1982); the current LT-AEM im-
plementation can also utilize other algorithms: Post-Widder (Widder, 1946), Weeks
(Weeks, 1966), and Chebyshev (Piessens, 1972). A solution is considered more ro-
bust if it is computed using two different methods yielding similar results (Davies

and Martin, 1979).

5.1 General algorithm

For LT-AEM, an ideal inverse transform method accurately inverts ®(x,t) for as
wide a range of ¢ as possible, using the fewest evaluations of ®(x, p). In LT-AEM,
the vast majority of computational time is spent computing ®(x, p), so an £ al-
gorithm which is slower and more complicated to implement, but makes very
efficient use of the image function evaluations would be more efficient overall.
Published numerical surveys of £~! algorithms by Davies and Martin (1979) and
Duffy (1993) have not broken the effort required for the inverse transform into
these two contributions. Most published inverse Laplace transform routines call

the image function (here an entire Laplace-space AEM model) as a subroutine, not
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taking advantage of the spatial relationships between calculation locations (each
point in the domain is solved independently). While more general, this behavior
could lead to incorrect recommendations as to the optimum inverse algorithm for
applications with a spatial structure. For LT-AEM problems, we found the Fourier
series methods (most of its many variants) converge fastest, are least sensitive to
auxiliary parameters, and are able to transform ®(x, ¢) across at least a log-cycle of

t using the vector of ®(x, p) associated with the largest time in that decade.

Problem setup
geometry, properties,
calculation t,x

Determine Laplace parameter vector p;

|

cycle over p; T L LT_AEM) stage 1

—>» coefficients a(pj
— ¥
cycle over p; compute image fcn

and locatons ——» & [a(p;), x| stage 2

compute ®(t,x) from ® [a,(pj),x] stage 3
cycle over locations

more locations
more times

new geometry or material properties

recompute

FIGURE 5.1. Numerical inverse Laplace transform flowchart

Figure 5.1 illustrates the flow of an LT-AEM calculation. The required values
of the Laplace parameter, p, are determined at the beginning of the calculation;
this approach optimizes efficiency of the routine, but makes it difficult to incorpo-
rate adaptive algorithms, which determine their p values as required during the
calculation.

LT-AEM itself is a two-step process (stages 1 and 2), step 1 being independent
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of the locations where the solution is required (unlike the single step finite element
method). The image function is computed for each required value of p and at
each desired space location, then these results are passed to the numerical inverse
Laplace transform algorithm as a matrix.

The arrows on the left of Figure 5.1 indicate what steps can be skipped in a
re-calculation, depending on what new information is required. If more ®(¢,x)
are required at new times (which are in the same log cycle of time as previous
times — not requiring new values of p), but locations where the solution is already
computed, the results of the LT-AEM model need not be re-computed; only stage
3 requires re-calculation. If the solution is required at new locations (and poten-
tially new times but only those that reuse the same p values), then the LT-AEM
solution can be recomputed using the existing coefficients, requiring going back
to re-compute stages 2 and 3. Finally, if the solution is desired for new problem
geometry, parameters or times that vary by more than a log cycle from existing
times, the entire problem must be re-computed, since new values of p are required

in every step of the process.

5.2 Parallelization

All numerical inverse transform algorithms allow for parallel LT-AEM implemen-
tation, since p is a parameter (no time marching). Each ®(x, p) can be computed
independently on a different slave processor, then the inverse LT algorithm as-
sembles ®(x, t) on a master processor (calculation of the £ takes an insignificant
amount of time compared to the calculation of the required ®(x,p)). This coarse-
grained parallelization is simple to implement and usually results in a nearly ideal
improvement in speed (i.e.,, n processors ~ n times faster) (Davies and Crann,
2002), in contrast to more complicated (and less successful) schemes needed to

parallelize the solution of time-marching methods, where large amounts of infor-



121

mation must be shared between processors.

Simple threaded parallelization (as opposed to message passing paralleliza-
tion) can be achieved using OpenMP (LLNL, 2008). OpenMP is not a library to
be added at link-time, but rather it requires a compiler that can create special
threaded executables from the OpenMP source statements. The GNU project pro-
duces a free Fortran90 compiler with OpenMP support (FSF, 2008). OpenMP cre-
ates one executable, requiring a multi-processor computer to run it in parallel, but
can be almost trivially added to existing Fortran code through special comments
surrounding loops in the code which should be parallelized. This allows OpenMP
code to be compiled either serially or threaded, changing from one to the other just
by changing compiler options.

Simple parallelization of the LT-AEM has been performed on two levels. First a
parallel BLAS library (TACC, 2008) is used for matrix computations, requiring no
changes to the code, only linking with the GotoBLAS library. Secondly, OpenMP
is used to distribute the calculation of the matching coefficients for each value of p
to different threads. With the recent proliferation of multi-processor desktop com-
puters, this approach is effective and much simpler than message-passing schemes
(e.g., MPI (Hempel, 1994)) needed for communication over a network between

computers on a cluster.

5.3 Specific methods

There are many numerical £~' algorithms; most of them can be broadly classi-
fied into those that approximate (A.4) using quadrature (e.g. de Hoog et al., 1982)
and those that approximate ®(x, p) using basis functions that have analytic inverse
transforms (e.g. Piessens, 1972; Weeks, 1966).

Three classes of numerical £~! algorithms which have historically proven use-

ful in hydrology and specifically in LT-AEM are discussed in more detail in the
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following sections. Numerical comparison of results for a few representative LT-

AEM elements is given at the end of the chapter.

5.3.1 Post-Widder

The Post-Widder inversion expression (Widder, 1946), can either be considered
an alternative definition of the inverse Laplace transform, or it can be considered
of the functional approximation form. The approximation in Laplace space is a
Taylor series in the image function (equivalent to a power series in ¢ of the object
function — see Appendix A). The method is defined as a limit of a sequence, ®(t) =

lim ®,,(¢); each term in the sequence is defined as

n—oo

(1) 01 0"B(p) netl

(5.1)

where the required values of p directly depend on the desired value of t. The
Stehfest (1970) algorithm is a numerical approximation of (5.1), using finite dif-
ferences to replace the derivative and acceleration of the sequence {f,(¢)}° with

Salzer summation. The Stehfest algorithm is

B(t) ~ In2 > o (k;lnTQ) : (5.2)

where the V}, coefficients are independent of ®(p). The V}, only depend on the total

number of terms, N (which must be even); they are given by

A 7% (2))!
Vi = (=1)>% — o : (5.3)
2 (5 = DG = DHE = )25 = k)!
The Stehfest algorithm has seen application in hydrology (e.g. Moench and Ogata,
1981, 1984; Hemker and Maas, 1987; Lee, 1999), because it only requires real p
values and is algorithmically simple. The V;, coefficients can be computed once

and stored as constants. Unfortunately, V}; quickly become very large and the terms
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oscillate in sign as k increases, making the optimum NN a function of the working
precision of the computer. For double precision, N = 16 is considered optimum;
larger N suffer from severe cancellation. The algorithm is not designed to handle
functions with step changes or oscillations in ¢, unless N is very high.

Abate and Valko (2003) showed that the Stehfest algorithm can be accurately
applied in an arbitrary precision environment, such as Mathematica (Wolfram Re-
search, 2007) or MPF90 (Bailey, 1995), where V}, can be computed accurately for
large N. The downfall of this approach is that the entire LT-AEM model must also
be implemented in arbitrary precision, which is usually impossible or very expen-
sive. Philosophically, the arbitrary precision approach is also inelegant, since it
requires brute numerical precision to achieve what can easily be done using com-
plex double precision in other methods.

When the image function is available in closed form, (5.1) may be evaluated
directly. For general LT-AEM problems, where the generalized Fourier series coef-
ficients are computed from a least-squares problem, analytically computing 0/0p
is typically not possible.

In the cases where coefficients may be computed analytically (passive or simple
active elements), this method may be applied. An example of this is given using

the impulse point source, which has the image function

Dy (r,p) = %KO (T\/§> ) (5.4)

corresponds to the object function
2

D (r,t) = % exp {—47;—0(} , (5.5)

which is used to evaluate the error of the following numerical results. Convo-
lution of (5.4) with 1/p gives the traditional Theis (1935) solution (see example
section 2.4.2).

Applying (5.1) to (5.4) results in an unusually simple expression, because of

the recurrence relationships that exist for Bessel function derivatives (McLachlan,
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1955, p.204). The Post-Widder expression can be simplified to the form

&, (1) = L PR (V) _ntl (5.6)

~2mp n! o 2n(ap)v/? t
Fora =1,r = 0.1, Q = 1, and ¢t = 0.25, values of the errors committed in esti-
mating ®,,(r,t) are listed in Table 5.1. Although the Post-Widder solution itself is
only accurate for very large values of n, the series can be accelerated to achieve
higher accuracy. Aitken’s §%-process (Antia, 2002, §6.2) is used because it only re-
quires three adjacent terms of the series. Stehfest (1970) utilized Salzer summation
(requiring the 1 — N series) in his numerical approach.

A benefit of the Post-Widder approach, when it can be applied, is the solution
only requires one term for the non-accelerated Post-Widder solution, or three terms
for the §2-process accelerated solution (there is no n = 1,2 in Table 5.1). Higher-
order derivatives for some functions may be ill-defined, may not have convenient

recurrence relationships, or may be more involved to compute than Bessel func-

tions.
n error accelerated error
[P, — (2] 0% [®,] — @(1)]
3 9.668686 x10™° 1.722383 x10~°
4 6.503074 x10~3 1.174752 x107°
5 4.893049 <102 8.153614 x10~¢
6 3.920859 x10~* 5.810009 x10~6
7 3.270615 x10™* 4.295339 x10~
8 2.805238 x1073 3.286391 x10~¢

TABLE 5.1. Error in with Post-Widder approximation to £7'; n is the order of the

9 2455745 x107% 2.588455 x107°
10 2.183659 x10~% 2.088368 x10~°
20 1.035797 x10=* 5.067141 x10~7
30 6.788946 x10~* 2.222317 x10~7
40 5.049138 x10~* 1.241183 x10~"7
50 4.019141 x10~* 7.908633 x10~®

term, not the total number of terms used.

For most solutions, numerical evaluation of the Post-Widder formula is un-
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wieldy. For certain geometries, if the functional form is easily manipulable (po-
tentially using a computer algebra system), this method may be feasible. Other,
more sophisticated acceleration schemes may be utilized to further improve con-
vergence of this simple approach, in these situations.

The Post-Widder inverse is presented here to illustrate a method that capital-
izes on the analytic solutions that can sometimes be derived in Laplace space for
groundwater flow problems. This is an example of a benefit due to the elegance
that arises when working with analytic or semi-analytic solutions; a gridded nu-
merical method could also be posed in Laplace space, but it would be impossible
to compute derivatives (aside from finite difference approximations to the deriva-

tives) of the gridded solution with respect to the Laplace parameter.

5.3.2 Schapery

The method of Schapery (1962) is different from the other methods considered
here, since it only approximates the deviation of f(t) from a corresponding steady-
state solution. This obviously requires a steady solution, which does not always
exist (e.g., sin(¢) has no steady value). It is typically easier to reformulate and solve
the Laplace equation, than to attempt to solve the modified Helmholtz equation
fort — oo (i.e., as p — 0). The deviation is expanded in terms of decaying ex-
ponential basis functions — a simple but potentially ill-posed approach (Lanczos,

1956, §4.23); the method is given as

M
F@O) = fot > ae (5.7)
=1

where the steady-state or reference solution f; is assumed to exist, and a; is a vector

of constants to be determined. Applying (A.1) to (5.7) gives

M
r fs a; .

flp;)) ==+ j=12,..., M. (5.8)
(®:) Dj ;pﬁ—p]’
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M values of p; are picked (typically a geometric series) which cover the “important
fluctuations” in f(p); after setting p; = p; the a; coefficients can be determined as
the solution to a matrix problem. Posing (5.8) as P;;a; = (f(p;) — fs/p;), the matrix

to invert becomes

(p+p)" (pr+p2)t o (A pu)t
P, = | " TR mAmT e (e (5.9)
(pvr +p1)™" (o +p2)™" oo (om o)™

The matrix P,; does not depend on f(p), so it only needs to be inverted once for a
choice of p;, with the resulting a; coming from a matrix-vector multiplication with
the calculated f(p) and f..

This method also only requires real computation and historically has seen some
use (e.g. Liggett and Liu, 1983; Hemker and Maas, 1987), but has two main draw-
backs. It requires an additional steady-state or reference solution and no theory is
presented to indicate an optimal way to pick p;. A geometric series is suggested,
but Liggett and Liu (1983, p.177) note that some trial and error is required. This
method is briefly mentioned due to show its different approach and for historical

completeness.

5.3.3 Fourier series

The Fourier series approach for approximating (A.4) was initially made into a us-
able algorithm by Dubner and Abate (1968), it was first accelerated by Crump
(1976), and the method was further improved by de Hoog et al. (1982), among
others. There have been many different modifications and extensions to the basic
Fourier series approach, because it is a generally robust numerical inverse Laplace
transform method (Davies and Martin, 1979).

The method is based upon the connection between the Mellin integral and the
Fourier transform. Following Churchill (1972, §66), this begins by expanding (A.4)
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into real and imaginary parts (p = o + iw, where ¢ is fixed), giving
ot

e oo+i00 o
(1) / e“'® (o + iw) dw. (5.10)

27T 0—100

This complex contour integral along a contour parallel to the imaginary axis can

be broken into two real improper integrals,

ot 0 0
O(t) = Z— {/ e“'® (o + iw) dw +/ e“'®(o +iw) dw| . (5.11)
m —00 0
By the change of variables w = —w in the first integral, the two integrals can be

combined as

eat

"o

() /000 [e7“'® (0 — iw) + ' P (0 + iw)] dw, (5.12)

where the integrand is of the form [f(2)]" + f(z) = 2R [f(z)]. The two functions in
the integrand of (5.12) are conjugates of each other, [¢!®(0 + iw)]" = e"“!®( —
iw), because ®(p*) = ®*(p), rather than the more general form [®(p)]” = &*(p*)
(Milne-Thompson, 1996, §5.14). The simpler conjugation rule comes from conju-
gating both sides of (5.10); a real function of real argument equals its conjugate,
therefore the integrand must equal its conjugate (of conjugate argument). The in-

tegrand of (5.12) then becomes
2R {(cos wt + i sinwt) [3? (@)) +i (@)} } : (5.13)

multiplying out all four terms in (5.13) and only keeping the real part puts (5.12)

into the form
O(t) = ; /000 {R[®(p)] coswt — S [@(p)] sinwt} dw, (5.14)

which is a Fourier series approximation of the object function, ®(¢), in terms of
the image function ®(p). As with most Fourier series approximations, the func-

tion can be expanded equivalently in terms of a Fourier sine, cosine, or complex
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exponential series. These three equivalent forms are

O(t) = % /000 R [®(p)] coswt dw, (5.15)
_ _7 S [B(p)] sinwt dw, (5.16)
_ < / " et (o + i) dw) , (5.17)

™ 0

where (5.15) is a Fourier cosine transform of the time-domain solution, (5.16) is a
Fourier sine transform and (5.17) is the real portion of a complex Fourier transform.

Although all 3 of these analytic representations of ®(¢) are equivalent (e.g.,
Dubner and Abate (1968) used (5.15), while de Hoog et al. (1982) used (5.17)), when
evaluating (5.14) numerically with the trapezoid rule, Durbin (1973) showed that
using (5.17) leads to the smallest discretization error. Wynn (1966) found that in
general it is profitable to utilize the complex exponential Fourier series form over
the simpler trigonometric form, when applying nonlinear series acceleration; we
simply discard the unneeded imaginary component at the end. The trapezoid rule

approximation to (5.17) is

e 2, T s i
k=0

where T is a scaling parameter (often set to 2t,,,,) and the prime indicates that
the £ = 0 and 2M terms in the summation are halved. The values of p required
for the method (the argument to ®) do not functionally depend on the time being
inverted. Equation 5.18 is the non-accelerated Fourier series inverse algorithm,
and is of little practical use in this form, requiring thousands of evaluations of ®(p)
for many types of functions (Crump, 1976); there are several methods to accelerate
this summation.

Richardson extrapolation can be used to estimate the limit as the integration

step size — 0, one way of accelerating the convergence of (5.18). This technique
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is often referred to as Romberg integration (e.g. Antia, 2002, §6.2); it is very effec-
tive for smooth functions with bounded derivatives. Here we are guaranteed this,
based on the definition of the Laplace transform; all singularities are left of the
Bromwich contour.

The e-algorithm of Wynn (1966) can be used to increase convergence of the
trapezoid rule (5.18); this was the approach taken by Crump (1976) in the first
accelerated form of this method, and is illustrated by Antia (2002, §9.8). In their
widely-used version of this method, de Hoog et al. (1982) utilized a Padé approx-
imation (rational polynomials) with an analytic expression for the remainder of
the truncated series (which they termed double-acceleration). Homeier (1993) de-
veloped a more generalized non-linear transformation which performs better than
the e-algorithm, but is more unstable near singularities. Oleksy (1996) developed
an initial transformation using trigonometric identities, which is applied before
acceleration and leads to increased convergence near singularities. Sakurai (2004)
applied a variant of Euler summation to (5.18) to optimally accelerate the Fourier
series solution in the presence of singularities.

Any of these acceleration methods can be used to make the Fourier series ap-
proach a robust and efficient numerical inversion method for most ®(¢), but the
non-linear acceleration can cause numerical dispersion in some convective prob-
lems. Morales-Casique and Neuman (2008) describe difficulties in reproducing
pure advection, caused by the non-linear acceleration of Gibbs” phenomena near
sharp fronts. Brio et al. (2005) feel this shortcoming of the otherwise very robust
Fourier series approach is reason enough to use the Mobius-based methods, which
do not use or benefit from non-linear acceleration. For diffusion problems, non-

linear acceleration does not pose such a great threat.
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5.3.4 Mobius mapping

The numerical inverse transform algorithms based upon the Mobius transform fall
into the category of methods which expand the image function in terms of basis
functions that have analytic inverse transforms. Several different versions of this
approach (using Legendre, Chebyshev, and Laguerre polynomials) are discussed
in an early book by Lanczos (1956, §4.23-31); we discuss here the two most suc-
cessful of these, in their modern implementations.

Since, by definition, the image function is analytic in the right half of the p-
plane (see shaded area in left portion of Figure 5.2), the Mobius (i.e., bilinear)
transform can advantageously be used to map this region into the unit circle (see
Strack, 1989, §30; Needham, 1997, §3); following the convention of Davies (2002,
§19), this is given as

p—a—2b
1
z P a > o0y, b >0, (5.19)

where 2 is the mapped complex variable and a and b are auxiliary parameters. The
plane R(p) > a — |z| < 1, with the line R(p) = a — |z| = 1 (see dotted line A in
Figure 5.2) and the real line (0 < R(p) < oo, F(p) = 0) is mapped to the diameter of
the circle, —1 < R(z) < 1, ¥(z) = 0 (see dashed line B Figure 5.2). As is evident in

the Mobius inverse transform,

p—a-+b=

(5.20)

1—2z
the point p = oo is mapped to z = +1, requiring all image functions to be an-
alytic as a function of 1/p at infinity, to ensure convergence at this point on the
circumference of the unit circle.

The inversion algorithms attributed to Weeks (1966) and Piessens (1972) use
this approach, largely the same but utilizing different basis functions. The Weeks

method uses Laguerre polynomials for complex z (on the unit circle, A), while
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B §R(z)>

FIGURE 5.2. Mobius transformation between p (left) and z planes (right)

Piessen’s method uses Chebyshev polynomials for real z (on the diameter of the
unit circle, B). These methods are similar, and share a common theoretical frame-
work (though they were developed independently). Both methods expand the
mapped image function ®(p) in basis functions that have analytic inverse trans-
forms, allowing more rigorous error analysis and very different convergence prop-
erties than the Fourier series approach.

When the singularities of ®(p) are known, a and b can be chosen to allow any
values of ®(¢) to be computed from a single set of image function evaluations.
Unfortunately, due to the mapping, the Mobius methods are quite sensitive to the
values of the auxiliary parameters (a and b), sometimes completely diverging for
non-optimal parameter values. Despite these shortcomings, these methods are a
potentially useful alternative in some LT-AEM applications, especially simulation
of advection. This approach would be useful where interest lies only in one type
of element and time behavior, and therefore we can afford to make an in-depth

analysis of the optimum a and b values.

Weeks method The time-domain solution, using Weeks’ basis functions is

N
e " a, L, (2bt), (5.21)

n=0
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where L, (z) is an n'* order Laguerre polynomial (e.g. Andrews, 1998, §5.3) and a,,

are coefficients to determine. The Laplace transform of (5.21), in terms of z, is

L[®(t)] = D(p) = (12_1)’2) z;anz”, (5.22)

which is a power series expansion of the image function (the mapped image func-
tion is guaranteed to be analytic inside the unit circle). The simple form of (5.22) is
what has lead many to call the Weeks algorithm the most “natural” inverse trans-
form method (Davies, 2002). The coefficients can be determined from integrating

®(z) on the unit circle using the midpoint rule (designed to not sample the point

z = 1, which corresponds to p = o),

1
M 4
j

M=

\I] (62i0j,1/2) e_zin6j71/2 (5.23)

Ay —
1

where 0, = kn /M. The function ¥(z) is the conformally-mapped image function;

it is given by

\I/(z)zlﬁz@(lal)z%—a—b). (5.24)
Weeks originally suggested that a = 1/t,,,, and b = 2N/t,,,4,, Where t,,,,, is the
maximum time needed to be transformed. While the values of p required by ®(p)
do not functionally depend on the time being inverted, the optimal parameter val-
ues do. Without information about the location of singularities in ®(p) (— |2| > 1)
the most successful optimization is a 2-parameter search in the Laplace plane; this
requires many evaluations of ®(p). Weideman (1999) proposes some optimization
schemes for determining parameter values for a given problem, but his techniques

are quite expensive, often requiring hundreds of evaluations of ®(p) to estimate

optimum parameters.
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Chebyshev method Since the method is similar to Weeks” method, the discussion

here is minimal. The time domain solution is given as

B(t) = IS 4y s Fy(—nni 3, 1) (5.25)

where ,F, is a generalized hypergeometric function (e.g. Andrews, 1998, §11),
which for the given argument and parameters is just a polynomial. The Laplace
transform of (5.25) is

N-1

S a,T (1 _ Q—b) , (5.26)

n=0 p

O(p+a—0b) =

’@M—‘

where T, (z) is an n'-order Chebyshev polynomial (e.g. Andrews, 1998, §5.4.2).
The coefficients are evaluated using Chebyshev quadrature along the line —1 <
z < 1, resulting in

N—

a 2 kzo v (cos k+T1/2)> cos w, (5.27)

._.

with ¥(z) defined in (5.24).

Recurrence relationships for functions For both Mobius methods, the basis functions
are most stably computed from recurrence relationships, as severe cancellation oc-
curs when evaluating them directly from their published definitions for large n.
Davies (2002, §19) gives general stable expressions for these functions; they are
listed here in a simplified form. The two-term recurrence relationship for the La-

guerre polynomials (required in (5.21)) is
nl,(z) =(2n—1—2)L,_1(z) — (n — 1)L,a(x) n=3,4,5,... (5.28)

The stable three-term recurrence relationship for the generalized hypergeometric

functions (required in (5.25)), listed briefly as ¢,,(x), is

¢n($) = (An + an)qbn—l + (Cn + Dnl')QSn_Q + En¢n—3 n = 4, 5, 6, . (529)
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which is completed using the following simplified expressions for A,—E,

32 —8n+3 4 3n? —10n+6
A =" " " B —=_= __on —nTho .
" (n—2)n " n Ca (n—2)n (5.30)
Dn:_M En:_(”_l)(?’—n)
(n—2)n (n—2)n

with the recurrence relationships seeded using the first few values of n, given in

Table 5.2.

n  Ly(x) 2 Fy(—n,n; 3,1, 1)

0 1 1

1 1—x 1—2x

2 1-20+% 1 — 8z + 4a?

3 1-3o+32-2 1 — 18z + 2422 — 162

4 1—4o+32° - 225+ 21— 327+ 8027 — 1282° 4 160

TABLE 5.2. Basis functions for Mobius mapping methods
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Chapter 6

LT-AEM INVERSE APPLICATIONS

This chapter is comprised of two LT-AEM inverse-modeling applications. The first
uses the parameter estimation code PEST (Doherty, 2007) to estimate aquifer prop-
erties using data from one of several unpublished aquifer tests conducted at a field
site in Boise, Idaho (Barrash et al., 2006). In the first of three LT-AEM models used
to interpret the tests, aquifer parameters are assumed homogeneous; using PEST,
the model parameters were adjusted to best fit the observed head. After introduc-
ing two circular regions of different aquifer parameters, the model is re-calibrated
to better fit drawdown at two observation wells. For comparison, the first homo-
geneous model with a confined governing equation is used to illustrate the effects
the unconfined behavior have on the solution.

The second inverse modeling application is a synthetic forward model that uses
a Markov chain Monte Carlo inverse method (Vrugt et al., 2003b) to estimate the
location of 4 circular elements with K different from the background, when the

aquifer parameters are assumed known.

6.1 Boise aquifer test

The aquifer test was performed in a shallow unconfined aquifer (Figure 6.1, see
Barrash et al. (2006) for photomap of field site). The test was a dipole of two wells
(well C5 pumping on the west side of the group, well C2 injecting on the east
side) for a pumping duration of 280 minutes, with 200 minutes of recovery. The
pumping rate was approximately 4.3 L/sec (68 gpm) throughout the test for both
pumping and injection. Observations were made at 13 monitoring wells and the

two pumping/injection wells using pressure transducers and a datalogger. Well
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coordinates are given in Table 6.1; all wells are assumed to fully penetrate the 5m

thick unconfined aquifer.

40 X1

30

20 +. X8

C6+ + C1
1

861t 2482 c2

*B5y THES £ X

B4: . c3
+ C4

y [m]
o
3

-20

-30

-40

40 -30 20 -10 0 10 20 30 40
x [m]

FIGURE 6.1. Boise Hydrogeophysics Research Site well locations; see Barrash et al.
(2006) for photomap of site.

6.1.1 LT-AEM model

Due to an apparently irregular initial head surface at the beginning of the test, the
analysis was performed using drawdown from a baseline condition, averaged over
observations made during the hour before pumping began. It was observed that
the data recover to a common non-zero level of drawdown; Barrash et al. (2006)
indicates the trees surrounding the site have an observable evapotranspiration sig-
nal, varying sinusoidally by a few millimeters, with a period of 24 hours.

The observed drawdown was reproduced using a solution with an unconfined
source term (see model in §4.2.3). Drawdown observed in the pumping and in-
jection wells was observed to be influenced by a skin effect (Barrash et al., 2006),
which only affects those observations made in the pumping/injection wells. We

circumscribed two circular matching elements around a point pumping well to
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well x[m] y[m]
Al 0.00  0.00
Bl -0.27 292
B2 2.94 1.94
B3 372 -192
B4 023 -2.64
B5 -3.08 -1.89
B6 -2.38 1.30
C1 3.26 6.59
C2 8.14 0.52
C3 382 -6.01
C4 -433 -8.72
Cc5 913 -026
Cé -4.56 7.01
X2  30.02 -1.28
X4 -13.12 -17.78

TABLE 6.1. BHRS well locations

simulate the effects of wellbore storage a skin effect. The inner 10.2 cm-diameter
circle (corresponding to the diameter of the well casing), was assigned a unit spe-
cific storage Ss = 1 and very large permeability (K = 250 cm/sec), while the outer
circle has a 12.7cm diameter. The annulus between the two circles was assigned
a very low specific storage (i.e., approximately steady-state — common in wellbore
skin solutions); its permeability was a free parameter.

The parameters that were estimated from the data included aquifer properties
for the homogeneous domain, K, S,, K., S,, and the permeability of the skin at

both the pumping and injection well.

6.1.2 Homogeneous model results

As a first estimate, a homogeneous LT-AEM model was used to fit the observed
head data. Barrash et al. (2006) have characterized the site as being relatively ho-
mogeneous, based on single-well pumping tests. Two of the observation wells

(X2 and X4) did not fit particularly well at intermediate time (see Figure 6.4), po-
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observation wells A1-B3
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FIGURE 6.2. LT-AEM model (lines) and observed data (points) for observation
group 1

tentially due to some heterogeneity or anisotropy in the domain, which is not ex-

plained by the homogeneous LT-AEM model used here. The aquifer properties

95% confidence interval
parameter units estimated lower limit upper limit

K cm/sec 4.844 4.828 4.860
Ss - 0.002688 0.002497 0.002893
Sy - 0.07317 0.07287 0.07346
K, cm/sec  0.03341 0.03185 0.03504
Kfﬁ?p cm/sec  0.02964 0.02956 0.02972
K cm/sec  0.1264 0.1142 0.1398

TABLE 6.2. Results of parameter estimation for homogeneous model

estimate here are physically reasonable for an unconsolidated fluvial deposit, as is

observed at the Boise site.



139

observation wells B4-C1

drawdown (cm)

time since pumping began (min)
B4 x B5 ¢ B6 Cl1 o

FIGURE 6.3. LT-AEM model (lines) and observed data (points) for observation
group 2

6.1.3 Inhomogeneous model results

Two circular inhomogeneities were introduced, each surrounding one of the wells
X2 or X4 (see Figure 6.6), where the unconfined aquifer properties (X, and S,) were
allowed to vary independently from those in the background aquifer (the confined
aquifer properties were kept constant everywhere). A second set of parameters
was then estimated using PEST and the same observations, based on the results of
some preliminary “hand calibration” testing. The (z.,y.) locations of the centers
of the two circles (—15m, 25m), (42m, —6m) and radii of the two circles (17m each)
were not included in the estimation process. The K. in the circular regions was
estimated to be about two orders of magnitude lower than the background (see Ta-
ble 6.3), which was found to have the largest effect on fitting the intermediate-time
observations at wells X2 and X4 (compare the fit in Figures 6.4 and 6.7; the plots

for the other observation wells were not repeated as they are largely unaffected by
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observations wells C3,C4,C6,X2 X4
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FIGURE 6.4. LT-AEM model (lines) and observed data (points) for observation
group 3

95% confidence interval
parameter units  estimated lower limit upper limit

K cm/sec 5.068 5.042 5.093
Ss - 0.002061 0.0018467 0.002301
Sy - 0.07317 0.07288 0.07346

K, cm/sec  0.03837 0.03709 0.03969
KX2 cm/sec  0.0009003  0.0001038 0.007812
KXt cm/sec  0.0003497 3.905x10~°  0.003132
S;? cm/sec  1.060x1077 2.343x107% 4.796x10~7
S cm/sec  1.542x107% 3.429%x1077 6.935x107°

TABLE 6.3. Results of parameter estimation for inhomogeneous model

the two circular inhomogeneities). Decreasing K., while maintaining the aquifer
thickness, has the effect of decreasing 3 in Figure 4.9. Smaller 3 values correspond
to models that predict results with increased drawdown at intermediate times;
this behavior is like that observed at wells X2 and X4 in Figure 6.4 for the homoge-

neous solution. The S, estimated for the two circular regions was estimated to be
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Pumping well C5 and injection well C2

drawdown (cm)

102 107 10° 10 107
time since pumping began (min)
c2 x GC5 ¢

FIGURE 6.5. LT-AEM model (lines) and observed data (points) for pumping and
injection wells

un-physically small (smaller than confined storage). This in combination with the
low K values points to the explanation that the aquifer is behaving more confined
(essentially no delayed yield) near these wells. This might be attributed to some
clay layers near the top of the aquifer, but without field observations this is pure
speculation. The aquifer properties for the rest of the aquifer were estimated to be
approximately the same as for the homogeneous case, because the fit of the model

to the data elsewhere was good

6.1.4 Unconfined vs confined

As an exercise, the original homogeneous results given in the previous section
were recomputed with only a confined model (no S, and K) for comparison.
Comparing the results in Figures 6.8-6.11 to those for the unconfined case in

Figures 6.2-6.5, it is clear that the unconfined behavior is required to reproduce
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FIGURE 6.6. Well locations and circular inhomogeneous regions

the “two-hump” behavior observed in many of the observation wells (especially
wells B2 and B3 in Figure 6.8). The early-time and late-time data match the con-
tined model well, but the intermediate-time data clearly do not. The matches at the
pumping wells (see Figure 6.11) only show slight deviations from the data, illus-
trating that the wellbore storage and skin effects have a larger observable impact
on drawdown there than the delayed yield from the aquifer.

Interestingly, wells X2 and X4 (see Figure 6.10), that were determined in the pre-
vious section to have very small delayed yield in the circular regions surrounding
the wells, do not fit well with the “confined everywhere” model presented here.
Unconfined effects are visible in the data, but not to the same extent as seen in the
other wells. One possible manner to explain this observed difference is through
heterogeneous distribution of unconfined properties.

LT-AEM can be used to first match an aquifer test or similar data set using a ho-
mogeneous solution with only a few parameters, similar to an analytic solution. If
desired, more complexity can be added by introducing regions of different aquifer

properties or source terms. This allows flexibility not commonly found in a tran-
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observations wells C3,C4,C6,X2 X4

drawdown (cm)

-6 L L L
102 107 10° 10 107
time since pumping began (min)
C3 x C4 o Cb6 X2 o X4

FIGURE 6.7. Inhomogeneous LT-AEM model with 2 circles (lines) and observed
data (points) for observation group 3

sient analytic solution, without requiring the hydrologist to switch from the first

simple solution to a more flexible (but completely different) gridded flow model.
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observation wells A1-B3
10 v y—

drawdown (cm)

time since pumping began (min)
BT x A1 o B2 B3 o

FIGURE 6.8. Confined LT-AEM model (lines) and observed data (points) for obser-
vation group 1

observation wells B4-C1

drawdown (cm)
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FIGURE 6.9. Confined LT-AEM model (lines) and observed data (points) for obser-
vation group 2
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observations wells C3,C4,C6,X2 X4

drawdown (cm)

-6 1 1 1 1
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FIGURE 6.10. Confined LT-AEM model (lines) and observed data (points) for ob-
servation group 3

Pumping well C5 and injection well C2

drawdown (cm)

time since pumping began (min)
C2 x C5 o

FIGURE 6.11. Confined LT-AEM model (lines) and observed data (points) for
pumping and injection wells
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6.2 Synthetic inverse problem

A synthetic problem was created to facilitate the exploration of different possible
avenues for inverse modeling with LT-AEM, compared to the more traditional use
of PEST in the previous section. In this synthetic inverse problem it is assumed
we know the aquifer properties of the background and circular elements, but the
location of the circular elements is unknown. Tiedman et al. (1995) studied an
analogous synthetic problem related to steady-state flow in the presence of discrete

high permeability fracture zones, using a BEM forward model.

6.2.1 Synthetic problem description

Heads were sampled through time at 9 observation locations (stars in Figure 6.12),
then corrupted with unbiased Gaussian noise (o = 0.0025); the input data for the
inverse model are plotted in Figure 6.13. The LT-AEM model was fit to the data
using the Markov chain Monte Carlo inverse model SCEM-UA (Vrugt et al., 2003b)
to estimate the location of the 4 circular elements. Each of the 4 circular elements
have the same K. = 100K, but different known radii; Ss is uniform across the

background and all 4 circular elements.

6.2.2 SCEM inverse approach

The shuffled complex evolution Metropolis algorithm (SCEM-UA) takes a different
approach compared to search-based inverse methods (e.g., PEST); its goal is to
estimate the probability density associated with the parameters of the model (from
which the optimum parameters can be obtained). SCEM does not require an initial
parameter guess, only ranges over which the parameters will be sampled and an
initial distribution to sample them from.

There were 8 total parameters to estimate; z- and y-coordinates for each of the

4 the circle centers. SCEM was provided with ranges —5 <z < 5and —5 <y <5,
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FIGURE 6.12. Synthetic problem geometry, observation locations, and characteris-
tic drawdown contours. K. = 100Ky

along with a uniform probability distribution (essentially non-informative prior
information). SCEM begins with an initial sampling phase (here 10,000 iterations),
where the whole 8-dimensional parameter space is sampled to develop an initial
estimate of the multi-dimensional density function associated with the parame-
ters. After the sampling phase, the parameters are refined until the total number
of forward model runs are completed (here 50,000). Figures 6.14-6.17 show the pa-
rameter estimates for iterations 10,001 through 50,000 (i.e., not including the initial
sampling phase) as an image with the scaled a posteriori density function associated

with the 4 element locations.
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FIGURE 6.13. Synthetic noise-corrupted data used in inversion

6.2.3 SCEM results

In this synthetic example there were four circular elements, each with a distinct
radius (r; = 0.3, 7, = 0.5, r3 = 0.4, r, = 0.6) and a common known hydraulic
conductivity. The results are shown as relative density in Figures 6.14-6.17 for
the location of each circle independently. Each image illustrates the probability
distribution associated with 2 parameters, the + and y location of the center of the
circle (and the radius associated with that circle as well).

Using only 4 observation locations, either in the arrangement shown in Fig-
ure 6.14 or that rotated by 7 /4 in Figure 6.15, the parameters were not determined
correctly or uniquely. The arrows indicate where each predicted circle should ac-
tually be located, diffuse areas of gray indicate a poorly-defined solution, while
distinct black circles indicate a well-defined solution. It is clear that just because
the SCEM inverse model locates a circle with great certainty, it can be incorrect,
due to a lack of adequate information in the observed drawdown.

Using 8 observation locations (the first two groups of observations used to-

gether), the inverse model successfully locates circle 2 and circle 4, see Figure 6.16.
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FIGURE 6.14. SCEM results showing true circle locations, SCEM-estimated loca-
tions and 4 observation points (stars). Grayscale image represents scaled density,
black is highest probability.

Circle 1 is located incorrectly, and with low certainty (see the two gray circles in the

upper right). The poor performance with respect to circle 3 could be attributed to

the fact that none of the observation locations are very close to the true location of
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FIGURE 6.15. SCEM results showing true circle locations, SCEM-estimated loca-
tions and 4 alternate observation points (stars). Grayscale image represents scaled

density, black is highest probability.

this circle. Circle 1 is the smallest of the 4, and therefore makes the smallest impact

on the observed drawdown, likely leading to its mis-placement.

Finally, using 16 observations (an entirely different group of observations, with
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FIGURE 6.16. SCEM results showing true circle locations, SCEM-estimated loca-
tions and 8 observation points (stars). Grayscale image represents scaled density,
black is highest probability.

no overlap with the previous figures), SCEM locates all of the circles correctly with

great certainty, see Figure 6.17. With this arrangement of observation locations,

each true circle location is either surrounded by observations points or one of the
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FIGURE 6.17. SCEM results showing true circle locations, SCEM-estimated loca-
tions and 16 observation points (stars). Grayscale image represents scaled density,
black is highest probability.

observation points falls within the circle.

Qualitative comparisons We investigated the effects of more or less data noise, obser-

vations over fewer or more logcycles of time, more or less contrast in the elements
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compared to the background, and more or less observation locations on the ability
of SCEM-UA to correctly locate the circles. Using only early time data (50 observa-
tions over 2 rather than 4 logcycles of time) resulted in a very poor fit, with at best
only one of the circles being located at all. The results with un-corrupted data are
better, as would be expected; likewise, more noise (¢ = 0.1) lead to poorer results

than those shown here.

SCEM applications SCEM has seen numerous applications in surface water (Vrugt
et al., 2003a), and soil geophysical (Heimovaara et al., 2004; Huisman et al., 2004)
models where the forward models are simple and efficient and they can easily be
run many thousands of times. LT-AEM is efficient enough (each forward model
run used here took < 4 seconds) that semi-analytic transient solutions for non-
homogeneous groundwater flow problems can also be solved using the Markov
chain Monte Carlo approach.

This example was performed to illustrate a different approach to the inverse
problem compared to gridded forward models. In most forward models the model
grid is assumed a priori, but the parameters are allowed to vary in some man-
ner across the domain. The difference between using a fixed simulation grid and
“moving” elements could be likened to the difference between Eulerian and La-
grangian coordinates. Analytic models of subsurface flow would be well-suited
to Monte Carlo parameter estimation techniques, except they usually do not have
many degrees of freedom and cannot simulate flow problems of general interest.
LT-AEM allows the efficient and elegant analytic solution to be applied to more

general geometries and transient behaviors.
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Chapter 7
CONCLUSIONS

The Laplace transform analytic element method (LT-AEM) lies somewhere be-
tween analytic solutions and gridded models in both flexibility and accuracy; it
provides much of the elegance of analytic solutions to a broader set of geometries.
The use of the Laplace transform gives flexible analytic temporal behavior, while

retaining the benefits of the analytic element method (AEM).

LT-AEM and AEM Although conceptually LT-AEM is an application of AEM
to (2.3), operationally, the methods are quite different in several key ways. Since
the modified Helmholtz equation (2.3) contains the Laplace parameter p which
generally takes on complex values during numerical Laplace transform (LT) in-
version (see Appendix A), the differential equations have complex arguments or
parameters. Although some numerical inverse LT algorithms only require real val-
ues of p (see Chapter 5), they are usually less successful at inverting general time
behaviors (Davies, 2002), unless the calculations are performed using arbitrary pre-
cision (Abate and Valko, 2003).

Steady AEM solves Laplace’s equation, V2® = 0, where the aquifer properties
do not appear directly in the governing equation (only in the definition of dis-
charge potential, ), thus allowing direct superposition of solutions across regions
of different aquifer properties. Helmholtz’s equation does not allow this simpli-
fication since x* = pS,;/K appears in the governing flow equation, therefore the
approach given in section 2.5 must be used, unless aquifer properties and source
terms are uniform everywhere.

Steady 2D AEM often utilizes complex potential formulation, Q@ = & + ¥

(where ¥ is a streamfunction). In LT-AEM both ® and ¥ are themselves complex
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due to p, hence this convention is not applicable. If a numerical inverse Laplace
transform algorithm requiring only real p were used, expressions for the conjugate
potentials (analogous to the Cauchy-Riemann equations for Laplace’s equation)
can be utilized (Duffin, 1971). Conformal mapping (Strack, 1989, §29-33) is a com-
monly used AEM technique for extending solutions of VZQ = 0 to new geome-
tries. Although potentially applicable to the Helmholtz equation (Schinzinger and
Laura, 2003, §5.7), the method loses its elegance, compared to Laplace’s equation,
due to the appearance of extra terms (the original and mapped functions do not
satisfy the same governing equation).

For steady flow the streamfunction ¥ coincides with particle traces, but in tran-
sient problems streamlines and particle pathlines are generally different and the
transient problem requires a time integration to compute pathlines.

For steady 2D AEM, an important distinction is made between elements which
have an effect at “infinity” (e.g., the 2D Green’s function — In(r)) and those which
do not (e.g., circular elements ) > 7 "(a, cosnd + b, sinnf)), corresponding to
functions of 2 with and without a branch cut (Strack, 1989). LT-AEM elements are
either bounded or derived assuming no effect at co, which simplifies derivation
and implementation. In the limit as ¢ — oo and therefore p — 0 (reducing (2.3)
to Laplace’s equation), these elements would have effects at infinite distance, but
only in this limit. Therefore, in LT-AEM there are no branch cuts to consider or far-
field fixed heads that must be set to obtain a solution, as are required for several
common elements in 2D steady-state AEM.

Lastly, as discussed in Chapter 4, LT-AEM can handle certain distributed source
terms more easily than methods derived for V2® = 0, since the effects of transient
storage can itself be considered a source term in (2.3). The LT-AEM solution tech-
niques given here can readily be used to solve governing equations with additional
source terms, higher order time derivatives or convolution integrals. Leakance and

transient effects must be dealt with approximately (Strack, 2006) or using inflexi-
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ble area sources (Zaadnoordijk and Strack, 1993) in traditional AEM for the Laplace

equation, but are handled simply and precisely in LT-AEM.

LT-AEM theory We extended the introductory LT-AEM work of Furman and
Neuman (2003) under a more general light and introduced additional circular ele-
ments which illustrate the usefulness of LT-AEM to aquifer test interpretation. The
save approach was used for elliptical LT-AEM elements, which are the most gen-
eral 2D coordinate system where the modified Helmholtz equation can be solved
via eigenfunction expansion (EE). For a few geometries eigenfunction expansion is
an powerful and elegant method for deriving LT-AEM elements. Two limitations
of the EE approach have been encountered in this work; first the effort associated
with calculation and implementation of the special functions that arise, often for
complex argument or parameter. Secondly, the geometries associated with EE are
limited; creating elements from intersecting elements (e.g., a “cluster of grapes”
element that is the union of several circular elements) leads to some significant
convergence issues. These issues were noticed by Jankovi¢ (1997) for steady circu-
lar elements.

More general geometries can be approached using numerical approximation
techniques borrowed from BEM, traditional AEM, and the spectral element litera-
ture. As noted in the discussion on 3D EE (§3.4), due to the very involved special
functions that arise as solutions to the differential equations in some geometries,
these approximate approaches may be more appropriate.

The LT-AEM methodology (EE + numerical inverse Laplace transform) was
used to solve the leaky, unconfined, multi-layer, and damped-wave flow prob-
lems. These exemplify how LT-AEM can be extended to more general aquifer test
analysis scenarios; dual porosity may be similar handled. Analyzing transient
multi-source aquifer tests including inhomogeneities, finite leaky layers, nearby

boundaries and rivers would previously have been done using a finite difference
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or finite element model, but now they can be addressed with the LT-AEM.

Gibbs” phenomena (§D.2.3) arise when we truncate a Fourier series (or gener-
alized Fourier series). For LT-AEM these can manifest themselves in two inde-
pendent ways. When utilizing the Fourier series approach to the numerical in-
verse Laplace transform (§5.3.3) the inverted solution will have “wiggles” in time,
due to incomplete resolution of the image function with the defining Fourier se-
ries. The EE approach taken by here for the LT-AEM also can suffer from Gibbs’
phenomena in space, when a discontinuous or singular boundary condition is ex-
panded. These two expressions of Gibbs” phenomena are independent; temporal
fluctuations tend to manifest themselves across the portion of space effected by the
temporally-variable element, and spatial fluctuations tend to manifest at all times

(especially early and late where p takes on extreme values).

Elegance The elegance of both the AEM and LT-AEM have been mentioned at
several points in the previous discussions. An analytic solution can be considered
elegant because it concisely embodies one or more relationships about the process
being modeled. Some understanding can be gleaned without actually computing
a numerical solution. In steady AEM the elements themselves are analytic solu-
tions, therefore carrying over much of this elegance to the method. The numerical
boundary matching step, used to compute the coefficients of active elements, could
be said to weaken the elegance of the overall result. The resulting AEM solution is
very accurate and resembles an analytic solution, but the flexibility of the boundary
matching approach is in some part exchanged for elegance in the final solution.
Extending this to the LT-AEM, which additionally utilizes a numerical inverse
Laplace transform on top AEM boundary matching, the elegance could be consid-
ered to be even further degraded. This further loss of elegance is traded for the
temporal flexibility that the numerical inverse transform gives the problem. As

discussed in section 2.6.2, the coefficients can be found analytically for some very



158

special geometries. These analytic expressions, though limited, increase the ele-
gance and diagnostic capacity of the method. To obtain a truly analytic solution for
LT-AEM, these coefficients would also need to have analytic inverse Laplace trans-
forms (i.e., closed form expressions for the solution depending only on aquifer pa-
rameters and geometry). When possible, this approach is essentially deriving an
analytic solution from an LT-AEM solution.

The AEM or LT-AEM will therefore never have all the elegance of an analytic
solution, but the flexibility obtained in exchange for this can be considered a fair
trade. These methods do produce solutions that have the appearance of an analytic

solution, which can be argued is a form of elegance in itself.

Examples The examples given throughout Chapters 3 and 4, as well as the in-
verse applications in Chapter 6 illustrate the potential usefulness of LT-AEM for
interpreting aquifer tests; delivering a flexibility not found in standard analytic
aquifer flow solutions, and an accuracy and elegance greater than that found in
gridded numerical approaches. The flexibility and applicability of LT-AEM can
be increase through extension of LT-AEM to 3D flow, elements with anisotropic K&,
the inclusion of transient particle tracking, the addition of more aquifer test related
elements (e.g., elements with wellbore storage or a skin layer), and the addition of
approximate elements.

While the nomenclature and examples used here are specific to hydrogeol-
ogy, LT-AEM would be useful for the solution of heat conduction, neutron scat-
tering and other diffusion-dominated processes. The extension to the damped-
wave problem also shows that LT-AEM has the ability to solve additional prob-
lems which can be transformed into the modified Helmholtz equation using the

Laplace transform, which includes other non-diffusion processes.
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Future directions The most obvious extension of 2D LT-AEM is to three dimen-
sions. Using the EE approach given here, there are several coordinate systems that
would produce useful and tractable results (spherical, spheroidal, and cylindrical).
Other approaches, analogous to those used in steady AEM and BEM, including
Green’s function integration and Chebyshev function approximation, could also
be used to develop additional elements, for geometries where the EE approach is
not feasible.

Another possible LT-AEM extension would be the solution of transport prob-
lems. A particle tracing or method of characteristics approach could be taken,
using the results from the existing LT-AEM in its present form. The LT-AEM ap-
proach might also be applied to solve the governing advection dispersion equation
in Laplace space, although this does not result in the modified Helmholtz equa-
tion considered here without significantly restricting simplifications (e.g., unidi-
rectional flow allowing non-linear transformations analogous to those used in Ap-
pendix F).

The LT-AEM could be coupled with gridded numerical approaches (e.g., finite
elements or finite difference), to quite naturally supply external boundary condi-
tions. Since the analytic solutions used as elements in LT-AEM readily extend to
infinity, this could be coupled with a local and potentially non-linear gridded flow

or transport model, taking advantage of the strengths of each approach.
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Appendix A
LAPLACE TRANSFORM

A.1 Forward transform

The Laplace transform of a function of space and time, f(x,t), is defined for ¢t > 0

as
L {f(X, t)} = f(X7p) = /0 f(Xv t)e_pt dt, (Al)

where p is the generally complex Laplace parameter, and the over-bar indicates a
transformed time-dependent variable. The transformed function, f(x, p), is called
the image of the object function, f(x,t).

Time, represented by the real variable 0 < ¢ < oo, is transformed into a param-
eter p with R(p) > 0; valid for the right half of the complex plane. Theoretically,
each value of ¢ is related to the entire complex p plane, except at very small and
very large times, where the two are inversely related.

A brief list of useful pairs of image and object functions are given in Table A.2;
many more transform pairs can be found in reference books, the most modern and
comprehensive being Prudnikov et al. (1992).

The region of convergence for both (A.1) and the image function is illustrated
in Figure A.1 as the gray region extending to the right of the dashed line, the axis of
convergence. The axis is specified by oy, the abscissa of convergence (Lepage, 1980,
§10.4). The abscissa of convergence is important in numerical Laplace transform
inversion routines, as all singularities in the image function lie to the left of it.
A few example values are given in Table A.1, which indicates where the image

functions relating to these object functions have their rightmost singularities.
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R(p)

]

FIGURE A.1. Region of convergence of Laplace image function in p-plane

f(t) o9
ekt k
sint 0
1 0
ekt —k

1-H(t—-1) —-o0

TABLE A.1. Abscissa of convergence for simple time functions

A11 Two-sided Laplace transform

Two standard (one-sided) Laplace transforms can be connected to form the bilat-

eral or two-sided Laplace transform (Poularikas, 1996, §5.8)

Lo [f(x,1)] :/ f(x,t)e_ptdt:/o f(x,t)e_ptdt—l—/o f(x,—t)e!" dt, (A.2)

where this integral converges if both one-sided Laplace transforms converge. The
argument of the second integral is folded with respect to the integration variable,
flipping the sense of the convergence (it now converges to the left of its abscissa
of convergence). The overlapping region of convergence for the two integrals is
illustrated in Figure A.2; the standard Laplace integral (on the left in (A.2)) has its
convergence region to the right (associated with 0¢,), while the folded Laplace in-
tegral (on the right of (A.2)) converges on the left of the p-domain (associated with
092). The overlap region (cross-hatched in Figure A.2) is the region of convergence

for the dual-sided Laplace transform.
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FIGURE A.2. Regions of convergence for dual-sided Laplace transform in p-plane

A.1.2 Fourier transform

The two-sided Laplace transform and its region of convergence can be related to

the Fourier transform (Churchill, 1972, §131), defined by

F(w) = /_OO f(z)e 2™ dw, (A.3)

when p = 2mix (the factor i is related to the rotation of one region of convergence
with respect to the other — compare Figures A.2 and A.3). The domain of con-
vergence for the Fourier transform is also related to the singularities of the image
function; Figure A.3 shows it is a strip along the real axis in the w-plane. Boyd
(2000, §2.10) heuristically proves how the width of the region of convergence, py, is
related to the convergence of the analogous Fourier series. Section D.2 illustrates
how the convergence of a Fourier series is degraded by discontinuities in the func-
tion or its derivatives. With the Fourier transform, an object function with discon-
tinuities or discontinuous derivatives has a vanishingly small strip of convergence
po — 0; a function must be infinitely smooth for py — oo.

This comparison between Fourier and Laplace transforms mathematically il-
lustrates why using the Laplace transform is superior to using a Fourier transform
in time (as was done by Bakker (2004c)). First, the one-sided Laplace transform is
able to handle discontinuous time functions. This improved ability comes about

partially because of the increased region of convergence of the object function, al-
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Po R(w)

FIGURE A.3. Region of convergence for Fourier transform in w-plane

lowing different methods for inverting the object function (e.g., the different meth-
ods of numerical Laplace transform inversion discussed in Chapter 5). Secondly,
when the Laplace transform is modified to handle both positive and negative time
(A.2), its domain of convergence is greatly restricted (similar to the Fourier trans-
form). With the hydrologic problems dealt with here, defining the problem for

t > 0 only is an advantage, leading to better convergence of the resulting solution.

A.2 Inverse transform

The inverse LT is defined as the Mellin contour integral (McLachlan, 1953, §8),
which can be derived from the Fourier transform, is given as
~ 1 footico
£ (o) = et = o [ Foeetap (A4)
A common strategy for evaluating this integral is to deform the contour into a large
half circle of radius R — oo (the Bromwich contour), enclosing all the singularities
(Churchill, 1972, §71-74). If the singularities of the image function are poles, the
solution can be found using the method of residues; if any of the singularities are
branch points, the Bromwich contour must be deformed to accommodate them.
The strategy and details behind the evaluation of (A.4), for problems arising in
hydrology applications, are found in Lee (1999, §3.2).
It is difficult to come up with both necessary and sufficient conditions that en-
sure any arbitrary f(x, p) has a corresponding physical f(x,t) (Lepage, 1980, §12.8).

A criteria that is appropriate for the work presented here is the numerical stability
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and existence of the numerical inverse Laplace transform (see Chapter 5); some
additional forms may be valid but they would have little physical significance to
the current problem. For well-behaved f(x, p), there is a physically unique f(x,t)
(excluding discontinuous points where the function may differ —i.e., Lerch’s theo-
rem). If the true solution is discontinuous in time at ¢ = 7, the inverse transform of
the image function converges to the average value at that point,

S =9+ fr o), (A5)

f(r) =
where ¢ — 0. This mathematical detail comes up when trying to evaluate an in-
verse Laplace transform at ¢ = 0. The function is defined to be zero for ¢ < 0 and if
it is non-zero for ¢ > 0; the solution will converge to f(t = 0%)/2. Most numerical
inverse Laplace transform algorithms also have unrelated problems with evaluat-
ing functions at or very close to ¢ = 0, because this point essentially corresponds
to p — oo, which causes difficulties when evaluated on a computer with finite pre-

cision. The Mobius methods often handle this point best of the numerical inverse

algorithms discussed in Chapter 5.

A.3 General properties

The properties of Laplace transforms, which make them useful for solving differ-
ential equations, are the simplicity of calculus operations in Laplace space. Using
integration by parts on (A.1), derivatives with respect to time can be seen to be
equivalent to multiplication by p (with an assumption of zero initial condition).
Integration with respect to time is likewise division by p. Analogously, taking a
derivative of (A.4) with respect to p shows how multiplication by powers of —¢ in
the time domain corresponds to differentiation in Laplace space. An alternating

sign power series in ¢ can be related to a Taylor series in p.
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A.4 Some time behaviors

Some time behaviors that are potentially useful for hydrology applications (i.e.,

behavior of pumping wells) are given in Table A.2. Except for cos(kt), these func-

const stepon  pulsefromr tor,  steps (k wide) cosine
f@) c H({t—-7) Ht—-n)—H({t—m) Y H(t—-k) cos(kt)
flo) Yp e™p (e —eR)p?  1/(p—pe ™) p/(p®+ k)

TABLE A.2. Useful LT-AEM time functions

tions are all discontinuous in time. The ability of the Laplace transform to handle
discontinuous time functions is both a benefit and a potential weakness for numer-
ical inversion of the resulting image function, as discontinuous functions are the
most difficult types of functions to invert accurately. Step-like functions, with con-
tinuous derivatives can be used in place of the unit step, but translating this time
behavior to a non-zero time involves using the shift operator, e~™”, which itself has

a step behavior.
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Appendix B
VECTOR COORDINATE CHANGE

A detailed treatment of vectors in different coordinate systems is found in Morse
and Feshbach (1953, §1.3) or Chou and Pagano (1992, §12), the required portions
of this theory needed to compute useful Jacobians for projecting flux from one

coordinate system to another are given here, with an example of a transform given.

B.1 Metric coefficients

A coordinate system is defined by its metric coefficients; they are fundamentally

defined in terms of the length element,
ds? = da” + dy* + d2 = Y h2E, (B.1)

where h,, is the scale factor (i.e., metric coefficient) for the general coordinate &,.
Cartesian coordinates conveniently have unit scale factors and constant unit vec-
tors; the scale of the coordinates is invariant with position. Table B.1 gives the

metric coefficients for the 2D coordinate systems used in this work. Metric coeffi-

&1 hy & ha
Cartesian | x 1 Y 1
polar r 1 7 r
elliptical | n f Veosh®n —cos2 | ¢ fa/cosh?n — cos? 4
parabolic | u Vu? +v? v Vu? +v?

TABLE B.1. Metric coefficients for Helmholtz-separable coordinate systems

cients for 3D coordinates (Table 3.2) are quite lengthy for some of the coordinates,

and can be found in Moon and Spencer (1961b).
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B.2 Vector transformation

The fundamental definition of how vectors transform from one coordinate system

to another is

Fy = YmnFn, (B.2)

where F, is the ™ component of the vector F, the primed component is in the new
coordinate system, the unprimed component in the old system, and 7 is a direction

cosine. The ~ can be defined equivalently in either of the following ways

o 06, h, o,

7,08, " T O

(B.3)

The alternate definitions are useful, since sometimes a derivative with respect to
the old coordinate system is much simpler to compute than with respect the new

one.

B.3 [Example transformation

As an example, a conversion of the flux from a polar coordinate system, to an el-
liptical coordinate system is given in detail. This could be used to project the flux
vector due to a circular element onto the normal to the boundary of an elliptical el-
ement, which is required to preserve normal flux continuity. The circular element
has local coordinates (r, §), while the elliptical element has local coordinates (7, ¢);
as an intermediate step, the transformation goes through the global Cartesian co-
ordinates.

A vector, F, which is the negative gradient of a scalar, ¢, in an arbitrary coordi-

nate system is

1 9¢

where e, is the unit vector in the & direction.
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Flux in the local coordinate for the circular element is given as

1 0P 1 0P

h_,«Eer + h—e%ee ) (B.5)

q=-

where the overset character indicates which element the flux or potential is for.

(B.5) simplifies to

c oo 109
q=— Eer + ;%eg . (B6)

Flux in the local coordinate for the ellipse is

. 105 109
__|=-Z= - B.7
R P e (B:7)
which simplifies to
e —1 8(% 8(%
q= (B.8)

—e, + —e€
fy/cosh®n — cos2p | On oy v

For flux matching on the boundary of the ellipse, the flux effects of the circular
element (both radial and angular components) are needed, but expressed in terms
of the elliptical element’s radial coordinate,  (the normal to the elliptical bound-
ary). Using the transformation definition (B.2), 5,] can be defined first in terms of

Cartesian coordinates as
C.Cln = ’Yn:cg]x + Vnyéya (B.9)
then each of the Cartesian flux components can be defined in terms of the polar

coordinates of the circular element as

5;{: - 731’!“57’ + 73}9597
) ) ) (B.10)
qy = ,nyqr + ’YyGQQa

Substituting (B.10) into (B.9), gives

CC]n = [’Vna:%cr + 777y7yr] (37’ + [%x%e + ’777y’7y9] CC]@» (Bll)
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which becomes the following, after substituting the definitions of the direction

c h;p al‘ hx 813 h/ya h ay .
- Khn an) <h 8r> * (hn 5,7) ( T)] g, (B.12)
h

+ @ @ E % + (2 @
hy, On hg 00 h,, On
This simplifies to

c 1{{8x3_x Gyay]c {Ehl@x 8y18y1c}

qnzh—n a_narJra_nE q, + s

cosines (B.3),

onr00  onr oo (B.13)

Derivatives of the coordinates required above are computed from definitions:

% = fsinhn cos ¥; @ = fcoshnsin;

an on

or ' ody .

g, = ¢os 0; 5y — SiP 0; (B.14)
or o dy '

%——rsm@, ae—rcos@,

This finally gives the expression for flux with respect to the radial coordinate of

the ellipse, due to a circular element as

én :hin{ [sinh 77 cos 1) cos 6 + cosh 1 sin ) sin 4] g, (B.15)

— [sinh 7 cos ¥ sin @ — cosh 7 sin ¢ cos 0] 59 },

which is entirely in terms of the coordinates where the derivatives are being evalu-
ated. For the case of flux matching on the boundary of the ellipse, the M matching
points along the boundary all have the same 1 = 7, value, they have a range of
—m < 1 < 7, and the polar coordinates are these matching points, in terms of the
local coordinates of the circle (which depends on the translation and rotation of the
two local coordinate systems with respect to the global Cartesian system).

The definitions of flux as the gradient of potential can also be inserted into the
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definition, which makes the expression

1 09 b
h_nz_n :hin [sinh 7) cos ¢ cos 6 + cosh 1 sin ¢ sin 6] 68_7"_
. (B.16)
109
[sinh 7 cos 1 sin @ — cosh 7 sin v cos 0] ~ 30 (7

but the metric coefficients associated with the radial flux for the ellipse (LHS),
would cancel with a similar metric coefficient, which accompanies the normal flux

term on the inside of the ellipse, and is evaluated at the same location.
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Appendix C
LT-AEM AND METHOD OF WEIGHTED RESIDUALS

The method of weighted residuals (MWR) is introduced to illustrate how AEM
and LT-AEM fit within this framework. Quite generally, in MWR the free param-
eters associated with some test or basis functions are chosen so that the residual

associated with the solution is made to in some average sense.

C.1 MWR derivation

Following the outline presented in Finlayson (1972, §1), a general MWR solution
is posed for the 2D modified Helmholtz equation (2.3) with type I boundary con-
ditions. First, the solution is expanded in a set of complete orthogonal basis func-

tions,
N

O(x,p) ~ ¥ _ ci(p)di(x,p), (C.1)

i=1
where ¢; are known basis functions, ¢; are constants to determine, and the relation

is approximate because the series is truncated at NV terms. Unless the trial func-
tions are analytic solutions to the problem (satisfying both the PDE and boundary
conditions exactly), they will produce a residual, R, which must be minimized.
The residual is computed by substituting (C.1) into governing equation (2.3),
Rp(ci,x,p) = Z [V2¢z‘(x7p) - ’f2¢z‘(xap)} ci(p), (C2)
and the boundary conditions
RB(CiaSap) = Zcz(p)¢z(x(s)ap) - (I)BC(S7p)7 (C3)
where s parametrizes the boundary (e.g., arc length or angle), and ®pc is a specified

potential boundary condition (BC). The total residual is the sum of the domain and
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boundary residuals, R = Rp + Rp. Type Il BC, sometimes referred to as natural
BC, arise naturally when posing the PDE in integral form, through use of Gauss’
divergence theorem, and therefore do not need special consideration. Type I BC
are handled here separately from the PDE; type III BC would be handled similar
to the manner in which type I BC are illustrated here.

The weighted integral of the residuals over the domain is forced to zero,

Q r

where w; is a general weight function (to be chosen later), {2 represents the interior

of the domain, I' the domain boundary (see Figure C.1), and A is the domain area.

FIGURE C.1. Notation used for MWR problem

Substituting the definition of the residuals (C.2 and C.3) into (C.4) gives
Z c; / w; [V2¢; — K2¢;] dA + Z / wj [cii(s) — Ppe(s)] ds = 0. (C.5)
i L i YL

This can be rearranged as
Z {/ w; [V2¢i — ;{2@] dA+/wjgbi(3) ds} c; = /chi)Bc(S) ds (C.6)
r Q r r
which then can be written compactly in matrix form as A;;c; = b;. In theory, the A,
matrix could be inverted to find the coefficients, c;, once the basis and weighting
functions are known and the integrals are evaluated.
The MWR as outlined above is very broad and inclusive; different choices for
the weight and basis functions result in different numerical methods as special

cases.
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C.2 Choice of basis function

There are three choices for the basis functions, ¢;, based on how they affect R and

Rp;
e interior: basis functions satisfy BC, but not PDE (Rp = 0),
e mixed: basis functions don’t satisfy either BC or PDE,
e boundary: basis function satisfty PDE, but not BC (Rp = 0).

AEM, LT-AEM and the boundary element method use boundary-type basis
functions, while the spectral element method, and finite element methods basis
functions come from the mixed or interior class. In boundary methods, the resid-
ual is identically zero throughout the interior of the domain. The total residual
reduces to just R, which in 2D is a line integral along the domain boundary; only

the second integral in (C.5) is non-zero.

C.3 Choice of weight function

The collocation boundary matching approach can be fit into this MWR framework
by picking ¢ = 1,2, ..., M points along the boundary, defining the weight function
as

w;(se) = 0(s — s¢) (C.7)

which is illustrated in Figure C.2. Due to the properties of the J-function, the inte-
gral is reduced to the value of the boundary residual at the collocation points. The
total residual for a method using boundary-type basis functions, becomes the sum

of these errors,

D> [eidilse) = Puc(se)] = 0. (C.8)

(=1 i=1
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se

FIGURE C.2. Use of weight function to discretize boundary

For example, when the element is a circle and ¢,,(s;) = cos(né,) this expression be-
comes a trigonometric interpolation of the specified boundary condition (Lanczos,
1956, §4.11).

A different choice of weighting function can also incorporate the least-squares
(overspecification) collocation approach introduced to the AEM community by
Jankovi¢ (1997), mentioned as an alternative approach by Boyd (2000, §3.1), and
previously known in the MWR community. The history of this approach is re-
counted by Finlayson (1972, p.27); it dates back to 1964 in nuclear reactor engi-

neering. If the weighting function is chosen as

wys0) = 2055 — 50 (€9)

the integral along the boundary becomes

SN i) — Buc(se)]” = 0. (C.10)

(=1 i=1
due to the linearity of the residual to c;. This is the classic least-squares collocation
problem, posed in the framework of the MWR. This is the formulation for one
active element, but as discussed in section 2.6, the method can be readily extended
to any number of active elements simultaneously using a direct approach.
While this taxonomic discussion does not change the way in which LT-AEM
problems are posed or solved in practice, it does put LT-AEM in its place among

the many numerical methods that fall under the MWR umbrella.
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Appendix D
EIGENFUNCTION EXPANSION

The relevant theoretical foundation of eigenfunction expansion (EE) is given here,
as it applies to LT-AEM. While often considered an “elementary” technique for
solving PDEs, it is the most geometrical and intuitive PDE solution method. In
general, solutions for a PDE and its associated boundary conditions can be found

using
e eigenfunction expansion (separation of variables);
e Green’s functions (integration of fundamental solutions);
e variational methods (integral approach using weak form of PDE).

The Green’s function and variational approaches work for arbitrarily-shaped do-
mains, but result in integrals that often can only be evaluable in closed form for
simple geometries. The variational approach is one of the foundations for the Tr-
efftz boundary element (Qin, 2000) and finite element methods (Hughes, 2000).
Finite elements can equivalently be considered a special case of the MWR solution
in Appendix C. The direct BEM (Brebbia et al., 1984) and AEM approach of Strack
(1989, 2003) are based upon a Green’s function solution. The LT-AEM approach
taken here uses eigenfunction expansion.

In general, successful EE depends on meeting the following conditions, para-

phrased from Gustafson (1999):

1. the domain can be described in some coordinate system so that the bound-

aries consist of constant curves in that coordinate system;

2. the PDE is separable into ODEs corresponding to coordinate variables;
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3. the resulting ODEs are solvable (by means of special functions).

Gustafson (1999) also includes a qualification that the domain be bounded, but this
condition can often be relaxed, given the proper coordinate system and boundary
condition at infinity. This point was operationally addressed in the section on LT-
AEM boundary conditions (section 2.5.2).

Separation of variables is believed to have been first used by Daniel Bernoulli in
1753 for the taut string problem (Jeffreys and Jeffreys, 1972, p.436). The functions
comprising the Generalized Fourier series are orthogonal and form a separable
Hilbert space (infinite dimensional) solution (MacCluer, 2004, §6). The modern
Hilbert space approach can be used to justify the existence of the separation of

variables solution on more rigorous grounds, but is not pursued here.

D.1 Generalized Fourier series

The Fourier series approach posits that any piecewise-smooth function can be ap-
proximated using trigonometric functions over a periodic domain (e.g., f(f) =
f(0 + 2m)). Finite, non-periodic regions can be mapped onto periodic ones, result-
ing in Chebyshev polynomials, which extends the approach to additional domains.
The expansion of a PDE solution in terms of Fourier or equivalent Chebyshev func-
tions is the foundation of the spectral element method (SEM).

For SEM, Boyd (2000, §1.6) argues that one should always use Chebyshev poly-
nomials or Fourier series, due to their simplicity, rather than the potentially “ex-
otic” basis functions that may satisfy the ODEs in some coordinate systems (e.g.,
elliptic and parabolic). This viewpoint is held by many engineers and modelers,
because the trigonometric basis functions do so well in most situations, and typ-
ically they are unfamiliar with coordinate systems beyond Cartesian and polar.
In support of using the appropriate eigenfunction expansions, rather than blindly

using Fourier series everywhere, Gustafson (1999) contends:
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“One might ask, why solve all these special classes of ODEs resulting
from separation of variables, why not just expand everything in terms
of the trigonometric functions and hope for the best? One can indeed
adopt the latter viewpoint in many cases, accepting the resulting ‘ap-
proximate” solutions given by the partial sums of the Fourier trigono-
metric expansion. But those solutions are not as good as those resulting
from the natural expansion functions, the error may be harder to deter-

mine, and the “physically correct’ fit has been lost.”

Morse and Feshbach (1953, §6.3) illustrate how the convergence of any proper
set of eigenfunctions is the same as a Fourier series expansion of the same func-
tion; they prove that the expansion of any continuous function in eigenfunctions
converges or diverges at any point as the related Fourier series converges or di-
verges at that point. Since a large body of theory has been developed to prove the
convergence and summability of Fourier series under a broad range of conditions
(e.g. Lanczos, 1966; Torchinsky, 2004); these proofs then also apply to eigenfunc-
tion expansions, earning them the title generalized Fourier series.

Reasons for using trigonometric and Chebyshev series, rather than the proper
generalized eigenfunctions, include familiarity, ease of implementation, and the
existence of the fast Fourier transform (FFT). While some generalized “fast” eigen-
function transforms do exist for special functions with a 3-term recurrence rela-
tionship (Orszag, 1986), they are not as efficient as the venerable FFT. Although
many engineers will go to great lengths to apply fast transforms, in LT-AEM and
other boundary approaches, these types of fast transforms do not have the huge
impact they do in SEM and other interior methods. The fast transforms only show
large gains when N > 10,000 (Boyd, 2000, §10). In fact, Orszag (1986) states that
the largest fraction of the total improvement in solving problems using EE and fast

transforms comes from separating the coordinates (e.g., making the boundary a
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circle, where r is a constant). The speedup from using a fast transform to evaluate
the eigenfunctions (even FFT) is secondary.

A disadvantage for using the proper eigenfunctions that satisfy the PDE comes
from the complex-valued Laplace parameter. Since the parameter appears explic-
itly in the governing equation as x = /p/a, any set of eigenfunctions which sat-
isfies this PDE will likewise incorporate « into their definition, requiring the spe-
cial functions to be evaluated for complex argument or parameter. Most special
functions take on very different behavior for complex argument. When utilizing
interior-type basis functions (like SEM, finite difference or finite element — see
§C.2 for interior/exterior definitions), the basis functions need not be complex-
valued; only the coefficients need to be complex. This advantage is balanced by the
fact that interior methods require matching at both boundary and domain points,
effectively increasing the dimensionality of the numerical problem, making fast
transforms more necessary.

Eigenfunctions are as powerful as Fourier series and more importantly they
are the natural basis functions that automatically satisfy the PDE (and therefore
make good candidates for boundary methods like LT-AEM). It then seems that this
approach is very useful for LT-AEM. More general and potentially approximate
approaches for deriving elements (e.g., integration of Greens’ functions or interior

basis function methods) should be taken only when these methods fail.

D.2 Convergence of Fourier series

In LT-AEM, issues related to the convergence of Fourier series arise in two places.
First they arise in the convergence of the series of spatial basis functions that com-
prise the LT-AEM elements themselves, since the elements are generalized Fourier
series. Secondly, they can arise in the convergence of the inverse Laplace transform

methods, since the Fourier series approach is an effective strategy for solving the
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numerical inverse Laplace transform. While the discussion here is mostly centered
around the first point, the Laplace transform inversion discussion in Chapter 5
benefits as well.

For infinitely smooth functions (functions with continuous derivatives of every
order), a Fourier series expansion is said to have exponential or spectral conver-
gence (Boyd, 2000, §2.4). This means the magnitude of the coefficients decrease
faster than 1/n" for any finite k. This is the ideal case, any flaws in the function or

its derivatives will degrade the rate of convergence.

D.2.1 Singularities

Darboux’s principle states that both the domain and rate of convergence for a
power series is controlled by the location and strength of the gravest singularity
(Boyd, 2000, §2.6). Singularities include poles, fractional powers, logs and discon-
tinuities in the function or its derivatives. For AEM, point sources are typically
not located directly on boundaries between regions, so functional discontinuities
are the main concern. While it is possible to locate singularities on boundaries be-
tween regions, this would result in a potentially divergent, or at least very slowly-
converging eigenfunction series. In practice the singularity could be moved off the
boundary line by a small amount, greatly reducing the strength of the discontinu-
ity in the function to be expanded, but giving essentially the same solution.

While Darboux’s principle is related to the convergence of a power series, it is
equally valid for Fourier series, since they can be recast as complex power series.

For example, an infinite trigonometric series can be equivalently expressed in the
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following forms

flz) = Z a, COSNT + Z b, sin nx (D.1)
n=0 n=1
= Z Cpe'™® (D.2)
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(D.3)

=0 n=1
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where ¢4, = % (@gn F iby,) and z = exp (iz). Equation (D.3) is a power series style
representation of the function, heavily utilized in older steady AEM solutions (e.g.
Strack, 1989; Salisbury, 1992). A benefit of working with the trigonometric form
(D.1), rather than the more compact power series form (D.3) is the ease of handling
of even- or odd-symmetric boundary conditions.
Integral expressions for the Fourier series coefficients in (D.1) are derived using
orthogonality of the sines and cosines
/ sinnf sinmf df = / cosnbf cosmb df = 76, (D.4)
where ¢ is the Kronecker delta. The coefficients are found by multiplying by either

cos mf or sinmd, then integrating over the domain (—7 < z < 7), giving
1 T
ay = —/ f(0) cosnf do (D.5)
7T —TT
b, = l/ f(0)sinnd dé (D.6)
7T —TT

These integral representations for the coefficients can be used to determine their
leading behavior for large n. Integration by parts is a common technique for de-
riving asymptotic behavior when the method is appropriate (Bender and Orszag,

1999); applied to (D.5) it yields

a =+ { {@ sin(n@)} : - % /_ : £(60) sin(nd) de} | (D7)

™ n
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Using parts again on the remaining integral in (D.7) gives
™ ! U 1 ™
ap = = { {@ Sin(nﬁ)} + [&5) cos(n@)] — —2/ 1"(6) cos(nb) d@} . (D.8)
m n . n .on? ),
The sine term falls out due to the boundary conditions, as n — oo the second term
is most significant, since higher derivatives of f(f) are presumably small, and not

a function of n; this leaves

[f'(m) = f'(=m)]. (D.9)

Analogous analysis for the sine coefficients (D.6) leads to

T n n?

by — { [@ cos(ne)] T [f ©) sm(ne)] :r - % 7; #"(6) sin(nd) de} , (D.10)

—T

which, for large n, behaves as

[f(m) = f(=m)]. (D.11)

For any general f(f), the sine coefficients in (D.11) decay in magnitude as
O(1/n), butif f(0) is smooth the cancellation in the f(7) — f(—n) term suppresses
this leading behavior. Going back to (D.10) and performing parts again, we see
the next most significant b, term would be O(1/n?), while the remaining cosine
coefficients are O(1/n?); if the first derivative is also smooth, then the next sine
term dominates. Based on this analysis we would then expect convergence of the
coefficients to be at least O(1/n?) for smooth functions, and O(1/n?) for functions
with smooth head and flux (with respect to ¢). Continuing this process, we can
see how an infinitely smooth function would have coefficients that converge faster
than 1/n*, for any finite k, which is spectral convergence (Boyd, 2000). To gener-
alize the previous discussion, a single discontinuity can always be shifted to the
location # = £m, and a region with multiple discontinuities can be broken into

piecewise-smooth regions with each mapped onto the —7 < 6 < 7 interval.
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D.2.2 Fourier series residual

Given a general infinite Fourier series, (D.1), and the partial sum of the first NV

Fourier terms, fy(x), the truncation error in the finite Fourier expansion,

Ry = |f(z) = fn(z)], (D.12)

is bounded by the sum of all neglected coefficients,

Ry < Y (lan] + (bl (D.13)

n=N+1
since the trigonometric functions have an absolute value < 1. For large n, the
coefficients of an infinitely smooth Fourier series decay exponentially, therefore

the truncation error is on the order of the size of the last term retained,
Ry ~ O(lan]) ~ O(|bn]). spectral (D.14)

For the case where the function is not smooth, convergence will be sub-spectral
(or sub-geometric); low-order algebraic convergence (worst-case) leads a residual

term of larger order (Boyd, 2000, §2.12),
Ry ~ O(Nlay]|) ~ O(N|bn|) algebraic (D.15)

where |ax| must be smaller, therefore requiring more terms, to achieve the same
residual compared to the spectrally-convergent case, because the infinite sum of
truncated Fourier series coefficients is not dominated solely by the first neglected

term.

D.2.3 Gibbs’ phenomenon

The type of singularity which is of most concern to LT-AEM problems is a discon-
tinuity, which leads to slower algebraic convergence. This poor convergence was

tirst explained by Gibbs (1898), where a truncated Fourier series systematically
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over- and under-shoots a jump by ~ +9% of the jump value. As N increases, the
width of the overshoot region becomes smaller, but the amplitude of the over- and
under-shoot does not.

There are several strategies for improving poor convergence in cases where
Gibb’s effect is problematic; popular tactics include series transformation and ac-
celeration (Oleksy, 1996), the use of smoothing factors to dampen high-frequency
oscillations (Lanczos, 1966), or simply ignoring the problem and using a very large
number of terms (confining the error to a very small region). When using the large
N “brute force” approach, care must be exercised. When manipulating series that
are exhibiting Gibb’s oscillations, the integral of such a series will certainly exist,
but derivatives may not (Morse and Feshbach, 1953, §6.3). Smoothing factors can
both reduce the high-frequency oscillations associated with Gibb’s phenomenon
and increase the convergence of the trigonometric series. For a truncated Fourier

series, the Lanczos o factors simply modify the existing coefficients,

N-1 N-1
fn(z) = Z OpQy, COSTLT + Z opby sinne (D.16)
n=0 n=1

where the o factors come from the “sinc” function used in digital signal processing
(Smith, 1999, p. 212). The o-factors are analogous to taking a moving average of
the function, before expanding it in a Fourier series Lanczos (1956, §4.10). The
o-factors and sinc function are defined as

or(N) = % (D.17)
using this 0y = 1 and oy — 0; higher frequency harmonics are damped. These fre-
quencies would normally be damped by still higher frequency terms that have not
been included, due to truncation of the series. While the o terms do not eliminate
Gibb’s phenomenon, they reduce it from ~ +8.95% to ~ +1.19% of the jump dis-
continuity magnitude (Lanczos, 1956). Other trigonometric smoothing coefficients

similar to this one, utilized in the SEM literature, are given by Canuto et al. (2006).
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In his PhD dissertation, Jankovi¢ (1997) implemented intersecting steady circu-
lar AEM elements, which were discontinuous in §. He declared them to be largely
unusable, since a very large number of terms (thousands) were required to keep
the overshoot confined to a small region. He did not attempt to use smoothing
factors or series transformations to improve the convergence of the series.

The only place in eigenfunction expansion, where Gibb’s phenomena have
arisen, has been in expansion of discontinuous boundary conditions. For exam-
ple, using an active circular element with ®(ry,0 < 6§ < 7) = 1 and ®(ry, —7 <
8 < 0) = 0 would have convergence issues at § = 0 and £7. These issues were not
extensively investigated, since this type of boundary condition was considered
non-physical. This type of boundary does arise when intersecting elements (as de-
scribed above); for circular elements the Lanczos o-factors or series transformation
and acceleration techniques of Oleksy (1996) would lead to improvements. For el-
liptical elements there is less theory regarding the acceleration of convergence of

these series, but similar approaches can be taken.
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Appendix E
MATHIEU FUNCTIONS

We introduce the properties of Mathieu functions (MF) needed for the applica-
tions demonstrated in section 3.2. The angular MF follow the original (British
mathematical) naming convention introduced by Whittaker (1912), which draws
on the analogy to trigonometric functions. For the radial MF the newer (Amer-
ican physics) naming convention is used (e.g. Stratton, 1941; Chu and Stratton,
1941; Morse and Feshbach, 1953), which draws on the analogy between Bessel and
Mathieu functions. This hybrid nomenclature is common, but not universal. See
Gutiérrez Vega et al. (2003) and Abramowitz and Stegun (1964, §20) for tables list-
ing equivalences between the different common naming conventions that exist in
the MF literature.

For the Helmholtz equation in elliptical coordinates, Mathieu functions are the
proper eigenfunctions, which are discussed in the section on generalized Fourier
series D.1; Arscott (1964, §3.9.1) has some specific discussion and lists additional

references related to proofs on the convergence of series of Mathieu functions.

E.1 Higher special functions

The ODEs that arise when performing separation of variables on the Helmholtz
equation lead to various special functions (see Table 3.2), including Mathieu func-
tions. These coordinate systems and special functions can be categorized by their
singularities (e.g. Ince, 1956; Moon and Spencer, 1961b; Arscott, 1981). Cartesian,
spherical and circular cylindrical are the simplest three coordinates, correspond-
ing to the three in most common use. These simpler coordinate systems can be

derived from a general coordinate system with three regular singularities (Morse
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and Feshbach, 1953, §5), by moving the singularities to 0 or co and, if required,
moving two of them together (a confluence of singularities). This three-singularity
coordinate system is solved most generally by hypergeometric functions; exponen-
tial, Bessel, and Legendre functions are all special cases of hypergeometric func-
tions (Andrews, 1998, §9-12). Hypergeometric functions can always be put into
a two-term recurrence, which essentially means the functions turn a second-order
differential equation into a first-order difference equation. This is one of the funda-
mental reasons there are so many “nice” relationships involving Bessel functions
and their derivatives (e.g. Watson, 1944; McLachlan, 1955).

The rest of the coordinates systems (rotational, except spherical, and general)
and their associated special functions in Table 3.2 do not conform to this three-
singularity model (Arscott, 1981). The ODEs that arise from performing separation
of variables on the Helmholtz equation in these more general coordinate systems
(except for ellipsoidal coordinates) are simplifications of the Heun equation, which
has four regular singularities (Ronveaux, 1995, §1). Solutions to this equation have
three-term recurrences; a second-order differential equation is transformed into a
second-order difference equation. While usable, this three-term recurrence is not
the big improvement seen with the two-term recurrence arising from the hyperge-
ometric equation.

The point being made is that Mathieu functions are more complicated than
Bessel functions; they do not share most of the nice properties of Bessel functions.
The general and rotational (except spherical) coordinate systems appearing in Ta-
ble 3.2 are on par with, or more difficult than, elliptic coordinates (most certainly
with fewer references and publications). This is seen as a limitation of the eigen-
function expansion approach for developing LT-AEM elements. In these cases a
simpler Fourier or Chebyshev series approach (Boyd, 2000) may be worth the ex-

tra effort and inelegance required to implement it.
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E.2 Matrix formulation

To compute MF of complex argument, the matrix formulation of the eigenvalue
problem is used (Chaos-Cador and Ley-Koo, 2002; Stamnes and Spjelkavik, 1995).
Because of their required periodicity, the angular MF can be expanded in either

odd or even Fourier series; general expressions for the solutions are therefore of

the form
Cal®) = ) Arcosr, (E1)
r=0
Su(1) =Y Bysinry, (E2)
r=1

Putting these expressions into the angular Mathieu equation leads to the fol-
lowing four (even and odd coefficients are independent) recurrence relationships
for the Mathieu coefficients (McLachlan, 1947, £§3.10)

CLAO - qA2 =0
(a—4)As — q(2A0+ Ay) =0 (E.3)

(a—j)A; —q(Aja +Aj 5) =0  j=4,68,...

(a—1)A; —q(A1+ A3) =0
(a—j)A; — q(Aja+ A 5) =0 | =3,5,7,... (E.4)

(b—4)By — qBs =0

(b—j*)B; —q(Bjs2+ Bjs) =0 j=2,46,... (E.5)

(b—1)B1 —q(B3 — B1) =0
(b - jQ)Bj - Q(Bj+2 + Bj—Z) =0 ] = 37 57 77 cee (E6)
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where a and b are the traditional names for the separation constant in Mathieu’s
equation (Mathieu characteristic numbers), for the even and odd solutions, respec-
tively (see Table 3.1). These recurrence relationships can be put into to the form of
infinite tri-diagonal matrices minus a constant on the diagonal, multiplied by a
vector of Mathieu coefficients, which is the form of an eigenvalue problem. For

example, the even-indexed even coefficients (E.3) can be expressed in matrix form

as
(70 ¢ : oA, ]
2¢ 4 q Ay
qg 16 g¢q Ay
. —al t 20 ®7)
: q [2(M —2)]? q Agv—2)
I q -1 | ) A

where the infinite recursion is truncated at M terms, and there would be similar
matrix expressions for the other three recurrence relationships. A non-degenerate
square matrix of rank )M has M eigenvalues, for each eigenvalue there is an eigen-
vector. This matrix problem is readily and accurately solved with LAPACK routine
ZGEEV (Anderson et al., 1990). When ¢ is real, the matrix can be made symmetric,
and the solution can be found more efficiently using Cholesky factorization. For
complex ¢, the matrix would need to be Hermitian to be made similarly efficient
(not possible in the current application).

It is also clear in matrix form, that when ¢ — 0 the matrix becomes diagonal;
the eigenvalues of a diagonal matrix are simply the values on the diagonal, which
are integers. The MF each reduce to only one of the harmonics in (E.1), indicating
how MF degenerate to sine or cosine.

Blanch and Clemm (1969) give an example of the traditional continued frac-
tion approach applied to the complex Mathieu parameter case, which is poten-
tially more efficient than the matrix method, but requires an initial guess and is

only valid for small Mathieu parameter, |¢| < 4n, with asymptotic relationships
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required for larger ¢ (e.g. Alhargan, 2000a; Hunter and Guerrieri, 1981; Arscott,
1964). The matrix used to compute the eigenvectors is a truncated infinite ma-
trix; the size of the matrix required is proportional to the highest order of MF
needed, the accuracy desired, and |¢| (Delft Numerical Analysis Group, 1973); we
tind N+20 terms is adequate in most cases (where N is the highest order of MF
needed).

E.3 Double points

When the Mathieu parameter takes on complex values (because complex p are re-
quired for £7'), the eigenvalues become complex, and in the case of the angular
Mathieu equation, pairs of eigenvalues (and their associated eigenvectors) degen-
erate at isolated branch points (i.e., double points) in the complex ¢ plane. Fig-
ure E.1 illustrates the double points in a portion of the first quadrant; a(¢) and b(q)
for the other quadrants can be found through symmetries (Hunter and Guerrieri,
1981) (a2,+1 and by, 11 switch across the imaginary axis).

As given in Table 3.1, a,, ., is the mth degenerate eigenvalues for ce, (1, ¢) and
b, the same for se, (1), ¢)). The complex coordinates of the double points in Fig-
ure E.1 are tabulated in Blanch and Clemm (1969) and their calculation is discussed
in Hunter and Guerrieri (1981). When ¢ becomes complex and approaches one of
the double points shown in Figure E.1, two different eigenvalues approach one an-
other; e.g., at the value of ¢p ~ 63 + 203, labeled aq 11, ceg(; ¢p) and cey; (¢; gp) are
no longer orthogonal.

This eigenvalue degeneracy results in the occasional pair of eigenvectors being
less than orthogonal, depending on the value of ¢ (numerically, the eigenvectors
aren’t likely to be exactly degenerate). This behavior is not a problem for the overall
convergence of the solution when a more general least-squares solution (e.g., LA-

PACK routine ZGELSS) is used, which can accommodate this occasional degener-
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acy (see least-squares discussion in section 2.6.3). All numerical £~ methods use

®(x, p) for a vector of p values to compute a single time-domain solution. An entry

in this vector may coincide with a double point of Mathieu’s equation, shown in

Figure E.1, but because this degeneracy only affects a pair of the IV eigenvectors at

one (or possibly two) of the values of p, it is not critical to the overall performance

of the method.
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FIGURE E.1. Double points of Mathieu’s equation (3.27), where the eigenvalues

associated with two eigenfunctions merge.
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E.4 Definitions
E.4.1 Angular Mathieu functions

Angular MF are evaluated from their definitions in terms of infinite sine and cosine
series (second kind non-period angular MF are not useful in our application), for
R(q) < 0 (which arises due to the sign on ? in the governing Yukawa or modified

Helmholtz equation) they are (McLachlan, 1947, §2.18):

oo

cean(), —q) = (=1)" D_(~1)" A3 cos[2ryl], (E8)
r=0

cean1 (10, —q) = (—1)" Y _(=1)'BEHY cos[(2r + 1)y, (E.9)
r=0

seani1 (¥, —q) = (—1)" > _(=1)" ALY sin[(2r + 1)), (E.10)
r=0

Seznta (1, —q) = (=1)" Y (—1)'BESY sin[(2r + 2], (E.11)

r=0

where A" and B'" are matrices of Mathieu coefficients, corresponding to the a,
and b,, eigenvalues (both functions of ¢); the r terms of each comprise the eigenvec-
tors associated with the n'" eigenvalue that provides a periodic solution to angular
Mathieu equation. Even order (2n and 2n + 2) MF are 7 periodic, while odd order

MF are 27 periodic, see Table 3.1 for symmetries of the angular MF.

E.4.2 Mathieu coefficients

Because eigenvectors only define a direction, their length must be normalized ac-
cording to a standard. An extension of the normalization proposed by Goldstein
(1927) is used, since it is readily generalized to the complex case and it produces
angular MF of approximately unit size and constant amplitude for the entire range

of ¢» (LAPACK subroutine ZGEEV returns this scaling, additionally scaling the
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largest element to be real). The Mathieu coefficients are normalized by

/ " cenltr,—q) ce} (1, q) dip = 7 (E12)

—Tr

| seatv—0ysesv.0)dv = (E13)

where *x is complex conjugate, so the MF degenerate to trigonometric functions
as ¢ — 0. These integrals specify that the angular MF have the same root mean
squared value as the trigonometric functions, 1/ V2, and this quantity is not a func-
tion of q. All of the eigenvectors are normalized to unit length (which leaves the
sign ambiguous), except the coefficients of cey, (1), —¢), the first entry in the eigen-
vector is weighted twice,
2A5 (A))" + i AM (A =1 (E.14)
r=1
The sign of the eigenvectors is set so that the real portion of the diagonal elements
positive; this allows the Mathieu functions to naturally degenerate to their corre-
sponding trigonometric functions as ¢ — 0.
Alternate normalizations Morse and Feshbach (1953, p.1409) are in common
use (Alhargan, 2000a), but lead to large values of the angular MF for large values

of ¢, and do not readily generalize to complex g.

E.4.3 Radial Mathieu functions

Radial MF are best defined in terms of Bessel function product series (convergent
for all ); the most appropriate definitions are given below. These definitions are
for R(q) < 0, explicitly indicated by the negative on ¢ on the left hand side. The

effects of changing the sign of ¢ from the standard definition are accounted for by

the change of variables 2 = 7 — z, then the “non-negative” value for ¢ is used

when it appears on the right hand side of the definitions below. The radial MF are
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defined as (McLachlan, 1947, §13.30)

(_1)np2n i(_l)TAgzrn)Ir(Ul)Ir(W)? (E'15)

Ty, (n, —q) = 5
|:A82n):| r=0

fopnia (1, ~0) = L L S 1Y BEEY [ 0)l ) + T (0 0)]
va B
(E.16)

—1 il n . n
L0311, —g) = PSP 1 AR L ()L (02) — Lo (o)1 ()],
\/C_][Aan+1)] r=0
(E.17)

-1 n+13 n - n
Log,,42(n, —q) = —( ) 5 22 22 Z( 1)TB;+;2) L (1)L g2(v2) — Lo (v1)1n(v2)],
q [Bg n+ )i| r=0

(E.18)

where v; = \/ge”" and v, = /ge*" and the angular MF identities used above are

Pan = cean (0, q) ceyy (% Q) ) Pont1 = Ce2,41(0, Q) Ce/2n+1 (3, Q) ) (E.19)

Son+2 = S€h,45(0,q) S€3, 15 (%7 Q) ; S2nt1 = €5,11(0, ) S€2n 41 (%7 Q) - (E.20)

The second kind Bessel function product series are
—1) np2n 2n)
Keg, ( AL VL( (E.21)
? [ A ] z% (v2)
)" S2n+1
(2n+1) }

Komen (5 =0) =~ L2 5% ALY 10K s 1)+ a0 0]
wvalar]

o0

Z B;«T;l) VK1 (v2) = L (01) Ko (v2)]

Keyni1(n, —q) = (! [
T4
(E.22)

(E.23)

—1 n—l—lS " "
Ko 12(1, —q) = D™ sonz > BEY [ (01)K o (vs) — L (01) K (v)] . (E24)

2
q |:B§2n+2):| —
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Abramowitz and Stegun (1964) and Gutiérrez Vega et al. (2003) have tables re-
lating the radial Mathieu functions’ various names found in different publications.
Derivatives of MF are found by applying the derivative to the definitions; no sim-

ple recurrence relationships exist (see discussion in section E.1).



195

Appendix F

QUASILINEAR INFILTRATION FROM AN ELLIPTICAL
CAVITY

F1 Introduction

A solution for flow from a long elliptic cylinder cavity is given in two-dimensional
elliptical coordinates for the quasilinear (Philip, 1968) form of the steady unsat-
urated flow equation (Richards, 1931) in a homogeneous porous medium. The
solution is an extension of one by Philip (1984) for flow from a circular cylinder
cavity.

The approach taken here is to expand the linearized potential in the natural
eigenfunctions that arise in elliptical coordinates. This technique has been utilized
extensively in the physics literature (e.g., Stratton (1941, §6.12), Chu and Stratton
(1941), Morse and Feshbach (1953, p.1407-1432), Moon and Spencer (1961a), Ar-
scott (1964), and Kleinermann et al. (2002)), but the solution derived here for the
current problem’s boundary conditions is new.

Unsaturated porous media flow, specifically infiltration, is a very non-linear
process that is often solved numerically with finite element codes such as HYDRUS
(e.g., Skaggs et al. (2004)). Analytic solutions to infiltration problems, restricted as
they may be, often deliver more insightful results due to their simplicity. They
give solutions with fewer potentially complicating auxiliary parameters. Pullan
(1990) reviews the history of the quasilinear solution methodology and compares
numerous approaches for solving the linearized Richards equation.

In the context of predicting furrow infiltration, Rawls et al. (1990) compared
steady infiltration solutions for 1, 2, and 3 dimensions, using the 2D point source

solution of Philip (1968) in the comparison. The solution derived here for an el-



196

liptical shape is more realistically furrow-shaped; ellipses have the capability of
simulating the geometry associated with either wide or deep cavities and strips,
rather than simple point approximations. Warrick et al. (2007) and Warrick and
Lazarovitch (2007) discuss the impacts that dimensionality and “edge effects” have
on infiltration from strips and parabolic-shaped furrows.

The elliptical solution derived here can represent the geometry of a strip or
furrow explicitly, although without surface or water table boundary effects. It is
a free-space solution, since it is valid at large distance. A dry far-field condition
is assumed, resulting in no-flow far away from the ellipse. Including the effects
of the land surface (potentially intersecting the ellipse) would require imposing
a no-flow boundary condition. This homogeneous type II boundary condition
would become an inhomogeneous type III boundary condition after applying the
required non-linear transformations (Wooding, 1968). A solution for flow from an
elliptical cavity that accounted for this boundary condition would most likely be
approximate in nature (e.g., a linearized AEM or gridded numerical solution). An
alternative approach would be to use the integral expression of Lomen and War-
rick (1978, eq.5) (with D = 0, and no dependence on Y or 7') to include the effects
of a horizontal evaporative or no-flow boundary. Similarly, Philip (1989) and War-
rick (2003, p.276) indicate how a water table condition can be accounted for with a
free-space solution. Using the solution derived here in these integral relationships
leads to integral expressions that cannot be evaluated in closed form for general
values of the coordinates.

Bakker and Nieber (2004b) applied the analytic element method to the quasi-
linear flow equation for the problem of uniform vertical flow through ellipses of
different material properties. Their approach is quite general, but to obtain a solu-
tion for multiple elements involves performing two nested iterations. A non-linear
boundary-matching iteration is nested within an outer iteration that accounts for

the effects elements have on one another. In the analysis presented here, no itera-
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tions are required to compute the solution, outside of those potentially needed to
compute the required Mathieu functions (also needed for the AEM solution).
Mathieu functions arise as solutions to the modified Helmholtz equation in
elliptic-cylinder coordinates (Morse and Feshbach (1953, p.562), Moon and Spencer
(1961b), Arscott and Darai (1981), and Ben-Menahem and Singh (2000, p.53)). We
use a modern matrix eigenvector approach (Stamnes and Spjelkavik, 1995; Chaos-
Cador and Ley-Koo, 2002), allowing all the required functions and coefficients to
be computed using any combination of widely available eigensolution (e.g., Mat-
lab (MathWorks, 2007) or LAPACK (Golub and van Loan, 1996)) and Bessel func-

tion routines.

FE2 Governing equation
F2.1 Quasilinear flow equation

The steady-state unsaturated porous media flow equation (Richards, 1931) is

v (K(h)@h) - %—f, (E1)

where V is the 2D spatial derivative operator, K (h) is hydraulic conductivity [L/T1,
a non-linear function of pressure head, 4 [L]. Flow is driven by gradients in hy-
draulic head, ® = h — z, the sum of pressure and elevation heads (z positive down-
wards). Hats indicate the differential operators are dimensional. The Kirchhoff

transformation (Klute, 1952) is used to linearize (F.1); it is

o) / K (u) du, (F2)

where v is a dummy variable and © is matric flux potential [L?/T]. Applying (F.2)
and setting K (—o0) = 0, (F.1) becomes

VO =———. (F.3)
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The Gardner (1958) exponential hydraulic conductivity distribution is used to sim-

plify (E.3) further, by assuming the convenient relationship
K(h) = Kye®", (F4)

where h < 0 for unsaturated flow, « is the sorptive number [1/L] (related to pore

size) and K is K at saturation. Using (F4), the flow equation becomes

00

cop 0O
V@—aaz,

(E.5)

which is the quasilinear form of Richards’ equation, first extensively studied by
Philip (1968). Pullan (1990) summarizes the benefits and limitations related to the

quasilinear approximation.

F2.2 Elliptical geometry

A long elliptical pipe is represented as a surface of constant elliptical radius in two-
dimensional elliptic cylinder coordinates, where the variation along the length of
the pipe is assumed negligible. For a horizontal ellipse, the major axis is parallel to
the land surface (z-axis) and the positive z-axis points down (see Figure F.1). The
elliptical angular coordinate starts at the positive z-axis and increases clockwise,
0 < ¢ < 27. The Cartesian coordinates (z, z) [L] for the horizontal ellipse are

defined in terms of the dimensionless elliptical coordinates (7,) by

x = fcosh(n) cos(y), z = fsinh(n)sin(), (E.6)

where f is the semi-focal distance [L]. The boundary of the cylinder is defined
as 1 = 1o. The narrow dimension of the ellipse is twice the semi-minor axis, b =
fsinh(no), while the wide dimension is twice the semi-major axis, a = f cosh(n).

The eccentricity of the ellipse is a dimensionless quantity,

b2
e = 1 —_ — (F.7)

)
(12
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FIGURE F.1. Elliptical cutout geometry and coordinate convention. 1 and v are
the elliptical radial and angular coordinates; a, b, and f are the semi-major, -minor,
and -focal lengths, respectively.

equivalently given as f = eq, that ranges from 0 (circle) to 1 (line segment join-
ing the foci). The pair (a, e) completely specifies the geometry of the problem; a is
a measure of the size of the cavity, while e is related to its shape. There are other
combinations of parameters that can equivalently specify the problem, for example
specifying (f,no) or (a,b) is also possible. These other pairs of parameters, while
valid, have less physical meaning; they must be kept in a specified ratio to preserve
the size or shape of the problem, which comes naturally for the (a, ¢) combination.
Four ellipses, used in later examples, with ¢ = 1 and different values of e are plot-
ted for comparison in Figure F.2, with their properties listed in Table F.1. Ellipses
with e < 0.5 appear to be circles, unless the two are plotted next to each other for

comparison.

e=f "o b ¢
0 00 1 2
0.5 1.317 0.866 5.870
0.9 | 0467 0.436 4.697
1 0 0 4

TABLE F.1. Parameters for ellipses in Figure F2; o =1

The circumference of the ellipse, ¢ [L], cannot be evaluated exactly in closed
form; it is defined by an elliptic integral, but can be approximated using one of

several formulas. We use the simple YNOT expression (Maertens and Rousseau,
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o5

o5fF °

FIGURE F.2. Comparison of ellipses with « = 1 and e = [0,0.5,0.9, 1]. See Table E.1
for corresponding elliptical coordinates.

2000)
cx4vVay + by, (E.8)

where y = In(2)/In (g) and the error in the approximation is at most 0.4%.

F2.3 Non-dimensionalizing

Because of the problem’s homogeneity, it can be made dimensionless with respect
to the sorptive number of the porous medium. Dimensionless lengths are defined

as
A B F C
a b f ¢

where capital letters are dimensionless versions of lower-case variables. The ma-

X Z
=22 (E9)
x z 2

tric flux potential is non-dimensionalized by

©

9= —.
Oo

(F.10)

where ©y = ©(7). The boundary condition on the ellipse is specified pressure

head or moisture potential (h is a constant and @ is proportional to —z on the
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boundary),
h(no) = ho (E11)

while for simplicity, the far-field boundary condition is no-flow,
h(n — o0) = —o0, Olh(n — o0)] = 0. (F12)

The linearized flow equation (F.5) written in dimensionless form is

B
2,9 __
Vi =25 (F.13)

with corresponding dimensionless boundary conditions of
d(no, ) =1, J(n — o0) — 0. (F.14)

To eliminate the Z derivative we make an exponential substitution (Wooding,
1968),
¥ = He?, (F.15)

which reduces (F.13) to the Yukawa (Duffin, 1971) or modified Helmholtz equation,

V?’H = H, (F.16)

subject to the boundary conditions
H(no, ) —e~Fsinh0n)sin(@) — o=Bsin(v), (E17)
H(n — o0) =Hefsmhmsin() _ o (F.18)

in terms of the elliptical coordinates. Specifying the boundary condition on the
ellipse as constant ¢ rather than constant % results in the condition H (7o, 1) =
exp [Bsin(v)], but leads to positive i, which the quasilinear governing equation
cannot accommodate.

The dimensionless moisture potential, ¥, and hydraulic head, ®, are defined

and related to ¥ by

h ) i)
= L b = =
h_h() 2n< )7

where we take hy = 0 for simplicity.

U —

In(9) — Z, (F.19)
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E3 Solution via separation of variables

The dimensionless modified Helmholtz equation (F.16) in elliptical coordinates

(Moon and Spencer, 1961b, p.17) is

2 O*H 0°H
F?2[cosh(2n) — cos(2¢)] ( on? + 377/)2) =H. (F.20)

We perform separation of variables by substituting H(n,) = R(n)Y (¢), dividing

by H, separating everything dependent on 7 from terms dependent on v, then set-
ting both quantities equal to the separation constant, A. The results are simplified

into the form of Mathieu’s differential equations,

d’R
P = R (2gcosh(2n) + \), (F.21)
d?y
W =Y (2gcos(2¢) + A) . (F22)

These are the radial (F.21) and angular (F.22) modified Mathieu equations (McLach-
lan, 1947). Here, ) is an eigenvalue chosen to make the angular solution, Y (¢),
periodic for the specified value of the Mathieu parameter, ¢ = —F?/4. A negative
is used in the definition of ¢ to put the equations into standard form. The solutions
to equations (F.21) and (F.22) are radial and angular modified Mathieu functions;
see Gutiérrez Vega et al. (2003) and Bakker and Nieber (2004b) for characteristic
functional plots. The periodic solution to (F.22) and the corresponding free-space

solution to (F.21) is

Y () = agceo(v; —q) + Z ance, (V¥; —q) + byse, (V5 —q), (F.23)
R(n) = coKeo(n; —q) + chKen )+ d, Ko, (n; —q), (F.24)

where a,, b,, ¢, and d,, are coefficients to determine and ce,, (¢, —¢) and se,, (¢, —q)

are the even and odd, n'"-order, first-kind angular Mathieu functions of argument
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Y and parameter —q. Historically, they were referred to as cosine-elliptic and sine-
elliptic, based on how they degenerate to trigonometric functions as ¢ — 0 (see
Appendix A for definitions). Similarly, Ke,(n, —¢) and Ko, (n, —¢) are the even
and odd, n'™-order, second-kind radial Mathieu functions of argument 7 and pa-
rameter —¢. Radial Mathieu functions are analogous to modified Bessel functions,
degenerating to them as ¢ — 0.

There are additional solutions to (F.21) and (F.22) not needed for the solution
of (F.20), including the non-periodic second-kind angular Mathieu functions and
the first-kind radial Mathieu functions (analogous to I Bessel functions) that grow
exponentially as 7 — oo. Modified Mathieu functions are by convention associated
with ¢ < 0, but non-modified Mathieu functions can equivalently be used. This
equivalence is analogous to that between Bessel functions of imaginary argument
and modified Bessel functions of real argument.

The product of the solutions to the Mathieu equations is a solution to (F.20),
namely

H(n > no, ) = Zﬂn%cen Z 2 >> sen(1; —q) (F25)

where (3, and ~, are coefficients to determine and the radial Mathieu functions
are normalized by their value on the boundary of the ellipse. Expression (F.25)
simplifies to a generalized Fourier series expansion in the natural eigenfunctions

of the system (Churchill, 1972, §9) at n = 1,
Hy (o, 1) = fBoceo(th; —q) + Z Bucen(1h; —q) + Ynsen (Vs —q). (F.26)

E3.1 Determination of coefficients

The orthogonality of the angular Mathieu functions is derived from the orthog-

onality of their sine and cosine components (see McLachlan (1947) §2.19), which
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is
27
/0 con (1, @)5em (1, g) dib = 0 (F27)

for any integer m, n. The orthogonality of the Mathieu functions then is

2T 27
/O o (1, q)sem (1, @) i) = /0 cen(t, )cem(®, @) At = T (R28)

where 6, is the Kronecker delta and the two Mathieu functions share the same
real g. Multiplying (F.26) by each angular Mathieu function and integrating over

the domain, integral expressions for the coefficients are

2T
o= [ Holm.v)ce, (. ) du. (F29)
27
= [ Homtse v, ~0) . (30)
0

Equation (F.31) is expanded using (F.17) and the definition of the modified angular
Mathieu functions (F.61-F.62) resulting in

D S Al [T Beinw)
Bon = > (—1)rAy ¢ cos(2ry)) dy, (E31)
& r=0 0
_ (_1)n = rp(2n+1) o —Bsin(v)
Bomir = ~— > (1)ByL e cos [(2r + 1)¢] d. (F32)
r=0

Using an integral definition for the modified Bessel function of the first kind (Wat-
son, 1944, §6.22), a phase shift of 7/2, and a trigonometric identity, (F.31) simplifies

to

ZAW L, (B (E33)

while (FE32) is zero for all integer 7, based on symmetry. This infinite sum of I
Bessel functions (F.33) is equivalent to one of several definitions of the first-kind

radial Mathieu functions (F.68), further simplifying the coefficient expression to

5271 - 2p2n162n (7707 _Q)a (F34)
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where p,, = A 2n) /cean (2 ; q) is a normalization constant and the argument of the
I Bessel functions in (F.68) is w = arcsinh(B/F'), which is simply w = 7. Similarly,

the coefficients of the odd functions become

—1)" 0 . 2
o = & W) S o(-1rAafy / e P W sin [(2r + 1)¢] dy (E35)
r=0 0
= n+1 Z A237—1‘,-+11 lyr11(B), (F.36)
= 2p2n+1102n+1(7707 —q) (F.37)

where due to symmetry the integral involving ses, - is zero for all integer r, and
Dont1 = \/§A§2n+1) Jceh, 1 (5;q), with the prime indicating differentiation with re-
spect to the argument.

Using (F.34) and (F.36), the solution for H from a horizontal ellipse is

N-1

H(n > no,¢) 22 panlesn(no, —q)cean (1), —q)

n=0

KeQn(n7 _Q)
Kean (10, —q)

K02n+1 (777 _Q)

F.38
Koant1(1m0, —q) (F:38)

+ Pon+1102n41 (N0, —q)s€2041 (¢, —q)

The approximation comes from truncating the infinite sum at 2N — 1 terms. The
first kind radial Mathieu functions can be evaluated using their identity as an in-
tinite series of I Bessel functions of argument B, given in (E33) and (F.36). These
Bessel functions have the same argument and therefore they can all be computed
recursively from the two values I;(B) and I, (B) using a backwards recurrence re-
lationship (Press et al., 2007, §5.4.1), as is done in most available Bessel function

libraries.

E3.2 Limiting cases

Circular As the ellipse becomes a circle, [A, B] — R,, the dimensionless circular

radius. In this limit ¢ — 0, then the eigenvector matrices, AP and A(sz{l , become

purely diagonal (see Appendix B); each angular Mathieu function is comprised
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of only one harmonic (n = r). Therefore, the coefficients in r reduce to a single
term, I»,(B). The angular Mathieu functions become trigonometric functions and
both the odd and even radial Mathieu functions become modified Bessel functions.
The elliptical solution uses both even and odd angular (and corresponding radial)
functions due to the symmetry associated with the chosen coordinate convention.

The circular cylinder solution of Philip (1984) can readily be re-derived for the
coordinate system given in Figure F.1; this results in a circular solution that corre-

sponds to the degeneration of (F.38) as e — 0,

H(R > Ro, o) géo((g))) To(Ro) + 2 Z_(—m"é?:(ﬁ)) Ton (Ro) c0s(2n6)—
=y Komia(R) .
2;(—1) mIQmH(RO) sin [(2m 4 1)¢] (F.39)

where the cos(0) term is halved, K, is the second-kind modified Bessel function,
R = ra/2 is the dimensionless radius, and ¢ is the angle (following the same con-
vention as 1 in Figure F.1, which is shifted /2 from that used by Philip). The
integrals involving the odd orders cosine and the even orders of sine are zero by
symmetry for all integer values of n.

Numerically, (F.38) is ill-behaved as ¢ — 0. The Mathieu functions do asymp-
totically become Bessel functions, but for e < 0.01 the solution is more efficiently

and accurately approximated with (F.39).

Strip In the other limiting case, as the elliptical cylinder degenerates to a ribbon
or strip (e = 1,19 = 0, and B = 0), the I,(B) coefficients all become zero except

I(0) =1, leaving

=

H(U Z 07 w) =2 (_1)nA((]2n)Ce2n<w7 _Q)

n

Ke2n(n7 _Q)

Kean(0, —q)" (F40)

I
o

which is the same form given by Tranter (1951) and used by Kuctik and Brigham

(1979) for the case of constant specified potential along an ellipse (not restricted to
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1o = 0 in their cases). When B = 0, the boundary condition on the ellipse (F.17)
becomes constant, since there is no z-variation across the strip. Numerically, (F.40)
is well-behaved, as the radial Mathieu functions can be evaluated at n = 0 without

problems.

E3.3 Modification for vertically oriented ellipse

Since the modified Helmholtz equation (F.16) is symmetric with respect to x and
z, the boundary conditions and back-transformation functions can be changed,
leading to the analogous solution for a vertically oriented ellipse (see Figure E.3).
The boundary condition for a vertical ellipse in terms of dimensionless matric flux

potential, analogous to (F.14), are

FIGURE F.3. Elliptical cutout geometry and coordinate convention for vertically-
oriented ellipse

19(7707 w) = 17 ]:10(7707 ¢) = 67ACOS(¢)7 (F41)

where a tilde indicates the variable is related to the vertically-oriented ellipse; the

tar-field boundary condition remains unchanged. This boundary condition leads
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to modified expressions for the coefficients

— n 2m =~ ~ ~
o = Y DAl [ et contard) ad
=2(=1)" Y (—1)" ALV (A), (F42)
r=0

_1\n =® 2T . R B
Bons1 = (=1) Z( l)ngﬂl)/ e~ Aes¥) cog [(27“ + 1)1/)] dy
0

= 2(=1)" Y (1) BY Ly (A), (F43)

r=0

= —282n+1162n+1 (?707 _q)

where symmetry results in the integrals involving se, being zero for all integer
values of 7, 53, = AJ™ /ceyn (05 ) and sy, 1 = \/§B§2"+1) /se4,+1(0, ). The solution

for H, analogous to (E.38), is

7 Ken ﬁv —q
H(7 =m0, ) 22 Z )" snlen (1m0, —q)cen (1, —Q)m, (F44)

which is very analogous in form to equation 27 of Philip (1984).
This solution is then back-transformed to dimensionless Cartesian coordinates

using the modified definitions
J=HeX, X = F cosh(7) cos(1)), 7 = Fsinh(7}) sin(¢)), (F.45)

where X points downward (see Figure F.3). The dimensionless potentials are

. ) 1. - -
= = P = — = —In(¥) — X. F.46
P h 2 5 _h 2 (¥) (F.46)

(=L
I
=3
=

The vertically-oriented solution (F.44) does not simplify in the limiting case 1y = 0,
due to its orientation; the source always has a boundary condition which varies

with X.
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F4 Darcy flux along elliptical circumference

To determine the total flowrate, Q [L?/T], and the average flux, v [L/T1], across the
elliptical surface, the flux on the boundary of the ellipse is found, beginning with

the dimensional form of Darcy’s law,
v=—-K(h)Vo, (F.47)

where v is the Darcy flux [L/T]. Expressing the gradient operator in elliptical co-

ordinates (Moon and Spencer, 1961b) makes (F.47)

S TR YN}
f\/%(cosh(Zn) — cos(2¢))) (877 n o ¢> ’

where e is a unit vector. For the horizontal ellipse, we substitute the definition of

(F.48)

hydraulic head in elliptical coorindates & = h — f sinh(7) sin(¢)), using the notation
&) = \/ 1(cosh(2n) — cos(2¢)) , and taking the dot product with e, leads to the

following for the radial (1) component of the flux

v-e, = K(h)
T fem,Y)

Evaluating (F.49) at n = 7o, applying the Kirchhoff transformation (F.2), using the

Feoshmsine) - 5. (F49)

Gardner exponential model, and non-dimensionalizing the flux leads to

1 , oY
FE(no, o) {28”1“”) B [3_77] } | (50

where Vi = 2v(n) - e,/(0c) and the subscript zero indicating the fluxes are evalu-

Vo =

ated on the boundary of the ellipse. The derivative in (F.50) can be expanded using

the product rule as

W\ _ pewwy J [OH -
{3_77} 70 —e { [ an ]770 ! ASln(w)H(TIO)} 7 "y

where H and its radial derivative are computed from (E.38).
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F4.1 Average normal flux

Multiplying by the dimensionless metric coefficient F'¢(, 1), the integral of (F.50)
over 0 < ¢ < 27 represents the weighted average dimensionless normal flux across
the boundary of the ellipse, V. The metric coefficient is necessary in elliptical
coordinates, due to the non-constant nature of the metric coefficients which define
the coordinate system (Morse and Feshbach, 1953, §1.3); i.e., lines of constant v are
spaced closer together near ¢ € [0, 7, 27|. The dimensionless average normal flux
integral is found using the integral relationships from (F.31) and (F.36), along with

the following integral relations

/27T P51 gin () cey, (1, —q) dip = 27 (— Z A 2n)I'
0

= 27rp2n1€2n(7707 —q), (F.52)
/0 7 B in (s (10, —q) dip = 27(— Z AZTVL, L (B),

= 27Tp2n+1102n+1(770a —q), (F.53)

which can be found using trigonometric product identities (Abramowitz and Ste-
gun, 1964, eq. 4.3.31 —4.3.33), the Bessel function derivative recurrence relationship
2l (z) = 1,-1(2) +1,41(2), and definitions of the first-kind radial Mathieu functions
(see Appendix A). Combining these, the expression for the average normal flux at

the boundary of the ellipse is found to be

N-1

= Keb,, (1m0, —q)
Vo= —4n Panlean (10, —q))* 2
’ HZ:O[ leznm =0l g0 o —a)

q)]2 K0/2n+1(7707 —q) (F.54)

+ [P2n41102041(0, =
[p2n+1102n+1(10 Kogy+1(1m0, —q)

_A162n<n07 _q)Ie/Qn(za _Q)
_Ap§n+1102n+1 (7707 _Q)IOIQnJrl (Zv _Q)

The total flowrate is Q = V(C, where C is the dimensionless circumference of the

ellipse, given by (E.8) and (F.9).
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When B = 0 and 1y = 0, the average flux due to the strip source (F.54) simplifies

to

N—-1 2 Ke' (0 _ )
oy 4n Aem]? Bey, (0, —q) (E55)
0(770 ) nz; [ 0 ] Ke?n(oa _Q)

For the strip, the circumference is 4F and £(0, ) = |sin(¢)].

F4.2 Normal flux for vertical ellipse

Beginning again with (F.48), but instead substituting ® = h — f cosh(7}) cos(v)), the
expression for the dimensionless normal flux to the boundary for the vertical el-

lipse, analogous to (F.50), becomes

- 1 - |09
‘/() == m {2008(770) — [a_’f}] no} s (F56)

+ B COS(I/N))]:I(T]())} : (E57)

70

Following a similar procedure, the average flux on the vertically-oriented ellipse is

= « Ke/, (10, —q)

Vo= —4r sulen(no, —q)]> =2l 27

0 7; [snlen (10, —q)] e (. —a)
_Bsilen(nm _Q)Ie; (’[U, _Q)7 (F58)

with the following simplification for a strip source,

2 Ke;(oa _q)
Ke, (0, —q)

Vo(no=0) = —4r Z [snlen(no, —q)] (E59)
n=0

E5 Results and comparisons

Plots of dimensionless hydraulic head, ®, and moisture potential, ¥, contours for

the case of an horizontal elliptical-shaped source are given in Figure F.4 for e = 0.9,
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similar contours for the degenerate case of a line segment (¢ = 1) are given in
Figure E5, while contours for the nearly-circular case (e = 0.01) are presented in
Figure F.6. The difference between the circular and elliptical cases when e = 0.01
and A = R = 1.0 is less than 1.5 x 107° units of dimensionless moisture potential.
Above the cutout (Z < —B), the circular solution is slightly larger, and slightly

smaller below.

I

Il

6 ‘ ‘ ‘
0 1 2 3 4
X

FIGURE F.4. Contours of dimensionless hydraulic head, ®, (left) and moisture
potential, ¥, (right) for horizontal ellipse (4 = 1.0, e = 0.9)

For the horizontal strip source (Figure E.5), the specified h boundary condition
is a constant (like Tranter (1951) and Kuctik and Brigham (1979)), because the entire
element has the same elevation, = = 0. For both the elliptical- (Figure F.4) and
circular-shaped (Figure F.6) cavities, the variation in ¢ along the boundary of the
source can be seen in the contours.

Analogously, for vertical ellipses, Figures F.7 and E.8 show contours of ® and
¥ for the elliptical and slit cases respectively. Unlike the horizontal ellipse, the
solution for the degenerate slit (the line segment —1 < X < 1) does not simplify

the boundary condition.
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FIGURE FE.5. Contours of dimensionless hydraulic head, ®, (left) and moisture
potential, ¥, (right) head for horizontal strip (A = 1.0, e = 1.0)

For plotting contour maps, such as Figures F4-F.8, a great deal of effort can be
saved if the solution is computed on a “separated” elliptical mesh (Orszag, 1986).
The angular Mathieu functions are computed for a vector of ¢ and the radial Math-
ieu functions are computed for a vector of 7, then they are combined in an outer-
product sense. Many plotting programs can accommodate a non-Cartesian mesh,
facilitating the use of this strategy. The dimensionless flowrate, Q = CV, is plot-
ted on semi-log and log-log scales in Figure F.9 for ranges of dimensionless semi-
width, A, and eccentricity, e. For a given size, there is more water flowing from the
circular cavity due to the greater surface area normal to flow. A horizontal ellipse
(solid lines) deviates less from the circular solution (highest dash-dot line) than an
equivalent vertical ellipse (dotted lines). This can also be seen comparing the loca-
tion of the —0.25 ¥ contour in Figures F.4-ES8; the vertical strip is smallest, while
the circular cutout is largest. For ellipses where e < 0.5 the difference between the
flowrate for the circular and elliptical cases is small; this is expected, based on their

similar shapes (Figure F.2).
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FIGURE F.6. Contours of dimensionless hydraulic head, ®, (left) and moisture po-
tential, ¥, (right) for nearly circular ellipse (A = 1.0, e = 0.01)

Second-degree rational polynomials were fitted in a least-squares sense; the
error in the approximation is illustrated in Figure F.10, with the coefficients of the
polynomials given in Table F.2. The polynomial regression is performed in log-log
space, where the curves take the form

co + c1logo(A) + ¢ [10g10(A)]2
1+ c3log(A)

logyo [Q(A)] = (F.60)

circular horizontal ellipse vertical ellipse

e 0 1 0.9 0.5 1 0.9 0.5
co | 17054 | 1.2021 1.3975 1.6344 | 1.0991 1.3364 1.6199
ci | 23638 | 21901 22727 23411 | 21291 23231 2.3636
cy | -0.2747 | -0.8789 -0.5527 -0.3298 | -0.7294 -0.3172 -0.2678
c3 | -0.1700 | -0.4488 -0.2977 -0.1951 | -0.3603 -0.1813 -0.1651

TABLE F.2. Rational polynomial regression coefficients for ()(A) in (F.60)

The distribution of V; along the boundary of the ellipse, as a function of v, for

different values of A4, is given in Figures F.11 and E.12 for the horizontal and vertical
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FIGURE F.7. Contours of dimensionless hydraulic head, ®, (left) and moisture
potential, ¥, (right) for vertical ellipse (A = 1.0, e = 0.9)

cases, respectively. For the larger cavity, the variation of flux along the circumfer-
ence of the cavity is greater, due to the boundary condition that is a function of the

vertical coordinate.

F6 Summary

We derived a 2D solution in elliptic-cylinder coordinates for Richards” equation, il-
lustrating its degeneration to the strip and circular cases. Infinite series expressions
for the flowrate and flux from the elliptical cutout were also derived. The solutions
are in terms of the eigenfunctions for elliptical coordinates, which themselves can
be computed from infinite series of the eigenfunctions for polar coordinates.
Although the solutions developed herein are for free space, they represents
strip and furrow geometries more realistically than the widely used point (Philip,
1968) or circular (Philip, 1984) solutions. To incorporate boundary conditions on

horizontal surfaces, approximate boundary-matching techniques must be used
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FIGURE F.8. Contours of dimensionless hydraulic head, ®, (left) and moisture
potential, ¥, (right) for vertical strip (A = 1.0, e = 1.0)

(e.g., those used by Bakker and Nieber (2004b)). The general solution (F.25) is in the
form of an AEM solution, but the final forms (F.38 or F.44) only have two free pa-
rameters beyond the geometry (a and hy); flexible AEM elements commonly have
many more. Analytic solutions usually have fewer free parameters than elements
in AEM do, but this is what makes them simpler to use.

A short Matlab script which computes the required Mathieu functions and eval-
uates the dimensionless potentials and fluxes is available from the corresponding

author upon request.
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FIGURE F.9. Linear-log and log-log plots of dimensionless flowrate, Q = C'V, as a
function of size (A) and shape (e) of the horizontal (solid lines) and vertical (dotted
lines) cavities. Limiting circular case is dash-dot line.
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FIGURE F.10. Relative error in least-squares rational polynomial regression for
dimensionless flowrate, (), for the horizontal (solid lines) or vertical (dotted lines)
elliptical and circular (dash-dot line) cavities.
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FIGURE F.11. Distribution of dimensionless normal flux, 1}, as a function of angle,
¢, for horizontal strip (left, e = 1) and horizontal near circular (right, e = 0.01)
cases (true circular solution shown as dash-dot line, nearly coincident with ellipti-
cal solution)
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FIGURE F.12. Distribution of dimensionless normal flux, V;, as a function of angle,
1, for vertical strip (e = 1)
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E7 Appendix F1

The modified angular Mathieu functions are defined as infinite series of trigono-

metric functions (see McLachlan (1947, §2.18)),

con(th,—q) = (1" f%(—l)TA;i“ cosfor], (E61)
cema(ty—a) = (~1)" S (~17BE cosl2r + 1)4], (£62)
seansn (¥, —q) = (—1)" i@(—wméﬁt” sin[(2r + 1)), (F.63)
Sean2(1, —q) = (—1)" 2(—1)?13&31? sin[(2r + 2)v], (F.64)

where A" and B!" are matrices of the Mathieu coefficients (eigenvectors for each
eigenvalue )\,), they are the generalized Fourier series coefficients representing
the Mathieu functions; see Appendix B. The integer n is related to the number of
zeros the function has on the 0 < ¢ < 2x interval. The even-ordered functions
have period 7, while the odd-order functions have period 27. The symmetry of
these functions with respect to the major and minor axes of the ellipse are listed in

Table F.3, from McLachlan (1947, §16.12).

major minor
Cean even even

ceonr1 | even  odd

seant1 | odd  even

S€on12 odd odd

TABLE F.3. Symmetry of angular Mathieu functions about the axes of an ellipse.

The radial modified Mathieu functions of the second kind are used as solutions
to the radial Mathieu equation (F.21) and are only evaluated in ratios of functions

of the same kind and order, allowing them to be simplified from their definitions
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in terms of Bessel function product series (McLachlan, 1947, §13.30),

Kean (1 =D, Z AT (01K, (09), (F.65)
Kezni1(n =D, Z Bg—il 01) K1 (v2) = Lgr (01) K (v2)] (F.66)
Kogn41(n, —q) = Dn ZA;Y;?” VD) Kpp1 (v2) + Ta (01) K (02)] (E.67)

where D,, is a normalization constant (not all the same) that is only a function of
the order, v; = \/ge™", v; = \/qe", and the eigenvectors A™ and B!" are the same
used in the angular Mathieu function definitions. The normalization constants can
be found in McLachlan (1947, p.368).

The integral expressions evaluate to radial Mathieu functions of the first kind,
when they are given in one of their several equivalent solutions in terms of Bessel

function series (McLachlan, 1947, §8.30)

Tean (w, —q) = (—1)" Ce?” com (5:9) ZA;” I, [2¢/gsinh(w)] (E68)
legn(w, —q) = (—1)"%;((—2%@ i(—l)"Aéﬁ”)IgT 24/q cosh(w)] (F.69)
0 r=0

be .1(0,9) o (2n
IeQn—H(“: _Q) ( 1 \/2_];12”+1) Z B;-&jl 127’+1 [2\/5C08h(w)] (F-7O)

w1 %0041 (319) o= 4 (2n
102n+1<w7 _q) ( 1) i \j_:: 25+1) ZAZ?H—J;DIQTJA 2\/68111}1( )] (F71)
r=0

In general, radial Mathieu functions can be expressed in terms of infinite sums
of hyperbolic trigonometric functions, Bessel functions with hyperbolic trigono-
metric arguments (F.68-F.71), or series of products of Bessel functions (F.65-F.67).
The series of Bessel function products have the widest and fastest convergence
(Gutiérrez Vega et al., 2003), and are therefore the most utilized; in the current case
the alternate definitions are only used for simplifying the infinite sums of Bessel

functions.
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FE8 Appendix F2

Alhargan (2000b) has published C++ routines for evaluating Mathieu functions
based on the more efficient but less widely applicable continued fraction expansion
method. These routines utilize a different normalization scheme than (F.28) and are
only valid for small Mathieu parameter (¢ < 4n). To evaluate (E.38) or (F44) it is
straightforward to use the more general matrix formulation with available matrix
solution software (Chaos-Cador and Ley-Koo, 2002), which is valid for any ¢, even
negative or complex values.

The matrices for which the eigenvalues are computed are derived from the 3-
term recurrence relationship obtained by substituting the Mathieu function defini-
tions (F.61-F.64) into the angular Mathieu equation (F.22); the details of the process
can be found in Green and Michaelson (1965) or Delft Numerical Analysis Group
(1973). The main and off-diagonals of the infinite matrices, from which the eigen-

values and eigenvectors are computed, are

0 4 16 ... (2r)? }
Aev = : F.72
[\/ﬁq ¢ g - q (E72)
— 2
Aod:[l g 9 25 ... (2r+1) } (E73)
a 9 q - q
2
BOd:{Hq 9 25 ... (2r+1) } (E74)
a q9 q - q

where Agi") is the matrix of eigenvectors from the symmetric tri-diagonal matrix
composed of the diagonal (first row) and the off-diagonals (second row) of Aev.
Similarly, Aod leads to AZ"4" and Bod leads to BS""; BY"? are not needed for
the current problem.

The matrices (E72-F.74) and the eigenvector matrices derived that are from
them A! B{" are infinite matrices that must be truncated; for most problems
20 coefficient delivers adequate accuracy. If N = 20, then N + £ < 30 is also suffi-

cient. Ellipses of very long aspect ratio (large F', small 7y) may require more terms,
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but the calculations remain trivial on a desktop computer. For the application con-
sidered here, when A < 2, the expansion of the boundary condition in angular
Mathieu functions is very accurate.

Since eigenvectors only define a direction, they must be normalized to have a
length consistent with convention. Two normalization schemes are popular, the
one used here is attributed to McLachlan (1947, §2.21). It consists of specifying the
norms to be 1/7 (simplifying the expressions for (s, and 7s,+1), while the other
normalization, attributed to Morse and Feshbach (1953, p.1409) sets the value or
slope of the angular functions at ¢) € [0, 7/2] to unity. This alternate normalization
(used by Alhargan (2000b)) instead simplifies the expression for the normalization
constant in the radial Mathieu functions, e.g., the coefficients outside the summa-
tion in (F.68—(F.71)).

If LAPACK routines (or equivalently Matlab calls to eig () ) are used to com-
pute the eigenvector matrices, only the first eigenvector of A$" must be re-scaled.
The solution for cey(v, —¢) is normalized so it degenerates to cos(0) as ¢ — 0. This
requires the normalization be

o0

2 [Agﬂz +Y [A9) =1, (F.75)
r=1

where the zero-order term is included twice.
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