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ABSTRACT

The Laplace transform analytic element method (LT-AEM), applies the tradition-

ally steady-state analytic element method (AEM) to the Laplace-transformed diffu-

sion equation (Furman and Neuman, 2003). This strategy preserves the accuracy

and elegance of the AEM while extending the method to transient phenomena.

The approach taken here utilizes eigenfunction expansion to derive analytic solu-

tions to the modified Helmholtz equation, then back-transforms the LT-AEM re-

sults with a numerical inverse Laplace transform algorithm. The two-dimensional

elements derived here include the point, circle, line segment, ellipse, and infinite

line, corresponding to polar, elliptical and Cartesian coordinates. Each element is

derived for the simplest useful case, an impulse response due to a confined, tran-

sient, single-aquifer source. The extension of these elements to include effects due

to leaky, unconfined, multi-aquifer, wellbore storage, and inertia is shown for a few

simple elements (point and line), with ready extension to other elements. General

temporal behavior is achieved using convolution between these impulse and gen-

eral time functions; convolution allows the spatial and temporal components of an

element to be handled independently.

Comparisons are made between inverse Laplace transform algorithms; the ac-

celerated Fourier series approach of de Hoog et al. (1982) is found to be the most

appropriate for LT-AEM applications. An aquifer test application and synthetic ex-

amples are shown for several illustrative forward and parameter estimation simu-

lations to illustrate LT-AEM capabilities. Extension of LT-AEM to three-dimensional

flow and non-linear infiltration are discussed.
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Chapter 1

BACKGROUND

1.1 Motivation

Water is imperative to life. In places where surface water is ephemeral or contam-

inated, water supply either comes from groundwater or must be imported. The

majority of the Earth’s non-frozen fresh water is groundwater. To understand and

predict the movement of groundwater in the subsurface we rely on sparse mea-

surements of head and aquifer properties (wells are expensive and geophysics is

only indirectly related to the hydrologic problem), interpreted and extrapolated

using groundwater flow simulations.

Models are simplified representations of reality. Hydrologists utilize concep-

tual models (e.g. Bear, 1988, §4.5.1), analytic models (e.g. Bruggeman, 1999), nu-

merical models (e.g. Bear and Verruijt, 1987), and even physical-analog models

(e.g. Bear and Zaslavsky, 1968, §12). In reality, subsurface geology and hydrology

are heterogeneous, complex, and difficult to characterize (e.g. Neuman and Di Fed-

erico, 2003); we accept that our models will not capture every detail of reality.

For well-understood physical processes (e.g., porous media flow, heat conduction,

neutron diffusion, or elastic waves), we simulate an equation which is believed

to adequately describe observed behavior as a proxy for the actual physical pro-

cess. There are a few fundamental equations of mathematical physics which have

been studied extensively because they appear repeatedly (Laplace, diffusion, and

advection-dispersion equations). When a process is identified as being governed

by one of these equations, we can immediately adopt a large body of previously-

derived analytic results and numerical methods.

While it is always necessary to eventually justify equations and solutions with
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observations, that is not being done here. We are focused on solving the governing

equations. Solving a diffusion problem produces a solution useful to hydrologists

or any field where diffusion is believed to describe the problem.

1.2 AEM introduction

The analytic element method (AEM) provides semi-analytic solutions to linear

porous media flow problems, through superposition of fundamental solutions (el-

ements) that represent physical entities in the hydraulic system. AEM has largely

been developed by Strack and his colleagues since the early 1980s; a historical

summary of AEM publications and contributors is recounted by Kraemer (2007).

The first AEM application was a steady 2D system, with an infinitesimally-thick

clay layer between two aquifers (Strack and Haitjema, 1981a,b). Inhomogeneous

aquifer properties or area source terms were handled using polygons of line dou-

blets and dipoles, which created the jump in discharge potential (due to change

in aquifer properties) or stream-function required in the solution. The funda-

mental elements in this approach were derived using line and area integrals of

the 2D Green’s function for Laplace’s equation (− ln r), over the desired curve or

area (Strack, 1989). This early AEM approach came out of Strack’s work with the

boundary element method (BEM) (Strack and Haitjema, 1981a); it is very similar

to BEM in both philosophy and implementation.

Most AEM applications have been concerned with two-dimensional steady

groundwater flow (Laplace and Poisson equations), but AEM has been extended to

3D (e.g. Fitts, 1989, 1991), transient (discussed in next section), multi-aquifer (e.g.

Bakker and Strack, 2003; Bakker, 2006), electrical geophysical (Furman et al., 2002),

and linearized unsaturated (e.g. Warrick and Knight, 2002; Furman and Warrick,

2005) flow problems. Strack (1989; 1999; 2003) and Haitjema (1995) cover the tra-

ditional line integral approach in great detail. This technique is not used here, but
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it could be applied to derive additional types of LT-AEM elements, following the

analogies drawn by Duffin (1971) between Laplace’s equation and the LT-AEM

governing equation (introduced in §2.1).

The traditional AEM and the Laplace transform AEM (LT-AEM) described here

partially fill a gap in available modeling tools between the analytic solutions de-

rived for simple geometries (e.g., radially-symmetric flow to a well (Theis, 1935))

and distributed-parameter gridded models (e.g., finite element (Istok, 1989) or fi-

nite difference (McDonald and Harbaugh, 1988) methods). AEM and LT-AEM

provide flexibility and computational efficiency, while retaining the accuracy and

much of the elegance of an analytic solution.

AEM is not intended as a replacement for gridded models, but there are many

situations where AEM and LT-AEM are more appropriate than a finite difference

or finite element model. Often, due to lack of detailed information about the sub-

surface or interest in simplicity, the assumption of homogeneous aquifer proper-

ties is adequate. Applications of AEM include the EPA WhAEM2000 software for

the federally-mandated wellhead protection program (Kraemer et al., 2007), NA-

GROM, the Dutch national groundwater model (de Lange, 2006), and numerous

smaller cases (Strack, 2003). In AEM models, the complexity of the problem is pro-

portional to the number of physical entities in the domain, rather than the grid

spacing. Hunt et al. (1998) and Kelson et al. (2002) demonstrate how AEM can be

used during the planning stage to improve complex gridded models. AEM and

LT-AEM make good learning tools, because the solution they compute is accurate

and efficient. Kraemer (2007) lists 8 steady-state AEM program implementations

freely available for use in academic settings.

Dagan et al. (2003), Fiori et al. (2003), and Janković et al. (2003) have investi-

gated the use of steady AEM solutions for simulating flow through a large number

of non-intersecting elements to explore topics pertaining to random heterogeneity.

Because non-overlapping, non-intersecting convex elements (e.g., circles, spheres,
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spheroids) cannot tessellate a domain (there is an interconnected background be-

tween the elements), additional theoretical complications arise. They have illus-

trated that AEM solutions can be used to investigate randomly heterogeneous flow

problems.

An active area of research in the AEM community is extension of the method to

transient flow problems. AEM is well suited for boundary value problems defined

by the Laplace and Poisson equations; extensions to transient flow governed by

the diffusion equation, an initial value problem, have taken several directions.

1.2.1 Transient AEM

Haitjema and Strack (1985) were the first to attempt an extension of AEM to tran-

sient groundwater flow; their approach was discontinuous in time, using a grid to

simulate the effects of transient storage. The space discretization of this approach

offset the mesh-free benefit of AEM. Haitjema (1991) approximated transient in-

terface flow (e.g., between fresh and sea water) near a well with explicit time

marching between steady-state Poisson solutions, using vortex rings to represent

the interface. Zaadnoordijk (1988) and Zaadnoordijk and Strack (1993) took an ap-

proach that combined steady and transient elements, using area source elements

to approximate transient storage. The method had many restrictions, including

that there be no net transient withdrawal from the aquifer, requiring additional

non-physical elements to be placed at a large distance to cancel local transient ef-

fects. The point and line source elements derived in this approach accounted for

both time and space behavior, significantly increasing their complexity. Several

of the expressions they derived contained temporal convolution integrals, which

were looked up in tables or evaluated numerically. The different combinations

of space and time behaviors to be considered, quickly rises to an unmanageable

number. Due to these limitations, the approach was neither accurate nor straight-
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forward. Zaadnoordijk (1998) also explored the combination of both transient and

steady well solutions; he found this lead to complications on both theoretical and

implementation levels that were not easily resolved.

Bakker (2004c) used a temporal Fourier transform to modify the governing

equation. The Fourier transform allowed him to better apply the AEM, similar

to LT-AEM, but without some of the benefits which the Laplace transform brings

(see Appendix A for comparison of these transforms). He arrived at essentially the

same governing equation used here through a Fourier transform, but he restricted

the approach to periodic time behavior (a finite number of sinusoidal harmonics).

This, coupled with the assumption of no initial conditions, limited the method’s

application to oscillatory problems (e.g., seasonal fluctuations caused by a river).

Bakker (2004b) proposed using Fejér averaging to smooth oscillations that arose

when expanding discontinuous time behaviors. While this approach did smooth

the oscillatory behavior, it can be thought of as a re-implementation of a numer-

ical inverse Fourier or Laplace transform algorithm. In general, there exist more

efficient and accurate ways to sum potentially divergent Fourier series than Fejér

averaging (§D.2).

Most recently, Strack (2006) outlined an approximate AEM approach in which

localized transient, leaky, or non-constant material property local perturbation el-

ements are superimposed on a constant property, confined, steady background,

with transient effects approximated using finite differences. The full details of

Strack’s latest method have not yet been given, only an abstract of the approach is

provided.

Furman and Neuman (2003) first used AEM to solve the Laplace-transformed

transient flow problem; the transform converts the initial value problem into a

boundary value problem, where the time dependence is expressed through the

Laplace parameter. They illustrated the method for point and circular matching

elements. LT-AEM back-transforms the Laplace space solution into the time do-
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main using a numerical inverse Laplace transform algorithm. In contrast to the

Fourier transform approach of Bakker (2004c), the Laplace transform and its nu-

merical inverse removes the restriction of periodic time behavior and allows for

the incorporation of initial conditions (Kuhlman and Neuman, 2006).

1.2.2 Laplace-transform based methods

The Laplace transform is a commonly-used tool for developing both analytic and

numerical solutions to transient diffusion problems. When it is possible to ana-

lytically invert the transformed solution, a closed-form time-domain solution is

obtained. Working in the petroleum industry, van Everdingen and Hurst (1949)

were the first to methodically use the Laplace transform to find solutions for flow

in porous media. Carslaw and Jaeger (1959) utilized the Laplace transform ex-

tensively to find analytic solutions for numerous geometries in heat conduction

problems.

When analytic inversion of the Laplace-space solution is not possible, or if the

solution is too complicated to be of practical use, asymptotic solutions may be use-

ful. Hantush (1960) analytically developed the solution for the modified theory

of leaky aquifers in Laplace space, computing numerical results using asymptotic

expansions at early and late time. Sternberg (1969) approximated the inverse so-

lution for flow to a well within a circular inhomogeneity by neglecting what he

considered to be insignificant terms in the Laplace-space expression, allowing an

approximate analytic inversion. Both of these problems now are trivially solvable

using LT-AEM (with numerical inversion). Furman and Neuman (2003) showed

that the Sternberg’s approximations led to an inaccurate solution that produced in-

consistent results. We show how the leaky Hantush (1960) solution is easily solved

and extended to other sources using LT-AEM (see Chapter 4).

Moench and Ogata numerically inverted analytic Laplace-space solutions for
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radial dispersion (1981) and flow to a well under various aquifer conditions (1984)

using the Stehfest (1970) algorithm. Hemker and Maas (1987) numerically inverted

the transient multi-layer flow problem, comparing results using the numerical in-

version algorithms of Schapery (1962) and Stehfest (1970). Numerical approaches

were used instead of developing analytic or asymptotic solutions, the same route

taken here by the LT-AEM. Many semi-analytic solutions for simple geometries

have been developed in the hydrology literature, because of the flexibility gained

from utilizing numerical Laplace transform inversions, often in conjunction with

other integral transforms (e.g. Tartakovsky and Neuman, 2007; Malama et al., 2007,

2008).

The numerical inverse Laplace transform approach has been used to extend the

related BEM to transient diffusion problems (e.g. Liggett and Liu, 1983; Brebbia

et al., 1984; Davies and Crann, 2002). For transient groundwater flow Liggett and

Liu (1983, §10.1.2) inverted the transient perturbation of a solution from the cor-

responding steady solution (analogous to the approach taken recently by Strack

(2006) in the time domain), an inverse technique introduced by Schapery (1962).

Few Laplace-space BEM methods utilize inverse algorithms which require com-

plex values of the Laplace parameter, restricting the number of applicable inverse

algorithms, to the methods of Stehfest (1970) and Piessens (1972). Finlayson (1972,

p.56) indicates that Laplace transforms have been utilized in solving different types

of method of weighted residual solutions, since as early as 1955. In hydrology,

the Laplace transform has successfully been used with finite element solutions

by Sudicky and McLaren (1992) for simulation of advective-dispersive transport,

by Ye et al. (2004) for simulation of stochastic moment-based flow equations, and

by Morales-Casique and Neuman (2008) for stochastic moment-based advective-

dispersive transport.
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1.3 Dissertation overview

In Chapter 2, we introduce the governing equation (§ 2.1) and the fundamental

concepts that LT-AEM is based upon, including those of superposition (§ 2.2) and

convolution (§ 2.4). Separation of variables and eigenfunction expansion are used

to derive elements which satisfy the governing equation (§ 2.3). After deriving

the elements and combining them to solve more general problems with superpo-

sition and convolution, the desired boundary conditions must be enforced using

the AEM process of boundary matching (§ 2.5), which gives enough information

to finally solve the coefficient problem (§ 2.6). The head or flux is then calculated

in a straightforward manner from the known coefficients (§ 2.7).

Once the supporting concepts are introduced, specific LT-AEM 2D elements

are derived for circular (§ 3.1), elliptical (§ 3.2) and Cartesian (§ 3.3) coordinates.

Some discussion regarding the extension of the methods to 3D problems is out-

lined in § 3.4. As an extension of the elements just derived, general methods for

deriving distributed source terms are given (§ 4.1). In Chapter 4 several homoge-

neous source terms of interest to hydrologists are derived, including leaky (§ 4.2.1),

multi-layer (§ 4.2.2), unconfined (§ 4.2.3), and damped wave (§ 4.2.4) source terms.

Perhaps the most crucial component to the success of the LT-AEM, the inverse

Laplace transform algorithm, is introduced in Chapter 5. Several different algo-

rithms are outlined and compared, including the Post-Widder (§ 5.3.1), Schapery

(§ 5.3.2), Fourier series (§ 5.3.3), and Möbius transformation (§ 5.3.4) approaches.

Chapter 6 illustrates two inverse-modeling applications of LT-AEM. One to

interpret a two-well unconfined aquifer test near a river using PEST (Doherty,

2007). The second estimates the geometry associated with a synthetic problem

using SCEM-UA (Vrugt et al., 2003b).

Several appendices supplement the material presented above. General proper-

ties of the Laplace transform are given in Appendix A. The metric coefficients of
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the coordinate systems for which elements are derived in Chapter 3 are given in

Appendix B, along with example calculations regarding the calculation of the Jaco-

bian (§ B.2), which is required to project a vector quantity (in this case Darcy flux)

in one coordinate system onto a vector in another system. We present a discus-

sion on the relationship between LT-AEM and the method of weighted residuals

in Appendix C. Details regarding convergence of Fourier series and eigenfunction

expansions are given in Appendix D. The Mathieu function used for eigenfunction

expansion in elliptical coordinates are discussed in detail in Appendix E, since they

are typically unfamiliar.

The last appendix is an application of the eigenfunction expansion approach

used here in elliptical coordinates. In this application, we solve non-linear steady-

state infiltration into unsaturated soil from an elliptical cavity.
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Chapter 2

LT-AEM FOUNDATION

In this chapter the governing equation is derived and the fundamental principles

of convolution and superposition are introduced. We introduce the method of

eigenfunction expansion, which is used later to derive elements of various geome-

tries. Through examples, boundary matching is developed and we solve for the

coefficients using either a direct or iterative approach.

2.1 Governing equation

Transient, confined groundwater flow in an elastic aquifer is governed by the dif-

fusion equation; Jacob (1940) was the first to derive it from physical principles

in the hydrology literature. While non-linear porous media flow is associated

with variably-saturated conditions (e.g. Warrick, 2003, §6), gas flow (e.g. Milling-

ton, 1959), unconfined flow (e.g. Bear, 1988, §8), flow at high Reynolds numbers

(e.g. Nield and Bejan, 2006, §1.5), or flow associated with large transient changes

(e.g. Vásquez, 2007, §1.2.1), the linear diffusion equation is considered adequate

for most confined flow applications. Non-linear problems can often be approxi-

mated adequately by linearizing them. Warrick and Knight (2002, 2004), Furman

and Warrick (2005), and Appendix F use a set of non-linear transformations to

linearize and solve the non-linear steady-state Richards equation. The governing

partial differential equation (PDE) used here is

bK∇2h(x, t) + bG(x, t) = bSs
∂h(x, t)

∂t
, (2.1)

where x is a vector of general spatial coordinates, t is time [T], b is aquifer thick-

ness [L], h is hydraulic head [L], G is a volumetric source term [1/T], K is hydraulic
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conductivity [L/T], and Ss is specific storage [1/L]. AEM problems are developed

in free space, and therefore they tacitly include the requirement that the solution

is bounded at infinity. Head, boundary conditions on specified curves, and source

terms are generally functions of both time and space, while the aquifer proper-

ties are assumed to be constant scalars. More generally, K is isotropic (a tensor),

but homogeneous anisotropic regions can be transformed into equivalent isotropic

ones (Bear and Dagan, 1965). Representing boundaries and inhomogeneities in

anisotropic domains presents additional complications for this type of transfor-

mation (Suribhatla, 2007), but the method is feasible for some simple coordinate

systems. The transformation will, for example, deform circles into ellipses, as men-

tioned in section 3.2.4.

Due to the superposition of different geometries in LT-AEM, it is not always

possible to simplify the overall problem into dimensionless quantities; fundamen-

tal dimensions of key parameters and variables are given in brackets. For two-

dimensional problems, unless otherwise stated, a unit aquifer thickness, b, is as-

sumed without loss of generality.

Girinskii (1946) and Strack (1976) established what is now the AEM tradition

of working with discharge potential [L2/T], Φ = Khb + C, where C is an arbitrary

reference that we conveniently set to zero. Applying the Laplace transform (see

Appendix A) to (2.1), written in terms of Φ with G ≡ 0, gives

α∇2Φ̄(x) = Φ̄(x)p− Φ0(x), (2.2)

where α = K/Ss is hydraulic diffusivity [L2/T], p is the complex transform param-

eter [T−1], Φ̄ is the transformed discharge potential [L2], and Φ0 is the initial value

of Φ. Change in head from a zero initial condition is also equated with drawdown

(common in aquifer testing). To render (2.2) homogeneous, we set Φ0 = 0, with-

out loss of generality. Non-zero initial conditions are introduced using impulse

area sources (Kuhlman and Neuman, 2006). This yields the homogeneous Yukawa
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(Duffin, 1971) or modified Helmholtz equation

∇2Φ̄(x)− κ2Φ̄(x) = 0, (2.3)

where κ2 = p/α is analogous to the wave number used in physics (Graff, 1991,

§1.1.2); later the definition of κ will be modified, due to the presence of distributed

source terms (Chapter 4).

LT-AEM elements can be developed by applying the Laplace transform (L) to

a known solution of (2.1), many of which can be found in the heat conduction

(e.g. Carslaw and Jaeger, 1959) or diffusion (e.g. Crank, 1975) literature. Equiva-

lently, solutions for (2.3) may be derived directly in Laplace space; the Yukawa or

modified Helmholtz equation appears frequently in seismic geophysics (e.g. Ben-

Menahem and Singh, 2000), elastics (e.g. Graff, 1991), acoustics (e.g. Morse and

Ingard, 1968), and physics (e.g. Duffin, 1971), as the space-dependent portion of

the solutions to both the wave and diffusion equations. Equation 2.3 degenerates

to the steady-state Laplace equation as κ→ 0, which corresponds to small Laplace

parameter and large time (see Appendix A). Since the final time-domain solution

is computed using a numerical inverse Laplace transform (L−1), the elements de-

rived directly in Laplace space are not required to have known analytic inverses

(but the inverse must exist); the numerical approach only requires numerical val-

ues of the solution.

2.2 Superposition

Spatial superposition is one of the fundamental ideas upon which LT-AEM is built.

It is a consequence of the linearity of the boundary condition and governing equa-

tion; if the boundary conditions are homogeneous, superposition is simple. Com-

bining non-homogeneous differential equations (DE) and boundary conditions is

possible using superposition, but it requires keeping track of the net inhomoge-
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neous terms, so their sum still satisfies the DE and/or boundary condition (i.e.,

boundary matching).

If u1(x) and u2(x) are two solutions of a homogeneous linear DE, then c1u1(x)+

c2u2(x), where c1 and c2 are arbitrary constants, is also a solution (Courant and

Hilbert, 1962, §5.1). More generally, any number of homogeneous solutions, u1(x),

u2(x), . . . with constants c1, c2, . . . can be combined into a convergent series

v(x) =
∞∑
n=1

cnun(x), (2.4)

where v(x) is then also a solution to the same DE with the same homogeneous

boundary conditions. This concept is used in eigenfunction expansion to build

up solutions for general problems from individual harmonics. For the standard

Sturm-Liouville problem (homogeneous boundary conditions specified at the ends

of a finite interval), un(x) is an eigenfunction and the integer sum index correspond

to the eigenvalues (the eigenvalues can be mapped onto the integers). If the ho-

mogeneous solution u(x, β) instead depends on the continuous parameter β, new

solutions can be composed using the more general form

v(x) =

∫
c(β)u(x, β) dβ. (2.5)

The integral form of superposition is used in Sturm-Liouville problems over in-

finite intervals, where integer eigenvalues are insufficient to resolve an arbitrary

condition. In LT-AEM the integral superposition case is not carried out explicitly;

the integral is approximated numerically by a sum (i.e., only (2.4) is actually im-

plemented).

2.3 Element derivation using eigenfunction expansion

The method of eigenfunction expansion is used to derive LT-AEM elements in

Laplace space that are solutions to (2.3), following the general approach of Furman
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and Neuman (2003); see Appendix D for convergence properties and theoretical

implications of this approach. The eigenfunction expansion (EE) approach pro-

duces analytic solutions that can represent an arbitrary boundary condition along

certain non-intersecting constant coordinate curves. The governing Laplace-space

partial differential equation (PDE) involves 2 or 3 independent variables (depend-

ing on the dimension, D). EE leads to an exact solution to the PDE in certain coor-

dinate systems, comprised of the tensor product of the solutions to the component

ordinary differential equations (ODE) (Gustafson, 1999, §2.9.1), found through sep-

aration of variables. This is represented as

Φ̄k(x) =
D∏
i=1

Φ̄k(xi), (2.6)

where Φ̄k(xi) is a solution to the separated ODE for the coordinate xi related to

element k. For certain geometries, (2.3) can be separated into ODEs with solutions

in terms of a complete set of orthogonal eigenfunctions (i.e., special functions).

Completeness ensures that any smooth function can be represented exactly by

the infinite family of eigenfunctions (MacCluer, 2004, §11.3). Orthogonality is the

functional equivalent to perpendicularity of 3D vectors; each function is maximally

independent over the range of definition (MacCluer, 2004, §5.1). Orthogonality is

defined for the complex function φ and ψ as∫ b

a

φn(xi)ψ
∗
m(xi) dxi = cδnm (2.7)

where a ≤ xi ≤ b, c is a constant, δnm is the Kronecker delta, and ∗ indicates

complex conjugation. More generally, (2.7) can involve a weigh function, but for

the current applications this is always unity.

In EE one expands boundary conditions in eigenfunctions, then the solution is

computed everywhere else using the coefficients determined from the boundary

expansion. The second-order ODEs associated with finite boundaries encountered
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in this work have solutions of the form,

Φ̄k(xi) =
N−1∑
j=0

[
akij φj(xi) + bkij ψj(xi)

]
+Rk

N , i = 1, . . . , D (2.8)

where φj and ψj are the eigenfunctions associated with the jth eigenvalue and co-

ordinate, xi. akij and bkij are generalized Fourier series coefficients [L2] that must

be determined for element k. The residual, RN , arises from truncating the infinite

expansion. In this case, the eigenvalues are the integers (j), because the domain

is finite. In cases where the domain size becomes infinite, the eigenfunctions will

become real numbers. When expanding a general function or boundary behavior,

the sum of all the eigenfunctions, corresponding to the spectrum of eigenvalues,

must be used (i.e., the form of (2.4)).

Upon recombination of the ODE solutions to form a solution to the PDE, prod-

ucts of coefficients are consolidated. For a two-dimensional problem this results

in

Φ̄k(x1, x2) =
N−1∑
j=0

[
Akjφj(x1) +Bk

j ψj(x1)
]

[ξj(x2) + ζj(x2)] +Rk
N , (2.9)

where φ and ψ are the basis functions for x1 and ξ and ζ are the basis functions

for x2. There are 2N coefficients to determine for element k (Akj and Bk
j ) and one

residual term.

(2.9) constitutes an exact expression for Φ̄k(x), since Rk
N → 0 as N →∞, due to

the completeness of the eigenfunctions. Convergence is at leastO(N−2) for smooth

functions with continuous first derivatives (details in section D.2). The condition

of smoothness is not overly restrictive for PDEs arising from physical problems;

in cases where discontinuous functions must be expanded (e.g., intersecting ele-

ments), convergence will be degraded, but often the situation can be improved

with series transformation and acceleration techniques (Oleksy, 1996).

LT-AEM utilizes a two-step solution process. The first step solves for the co-

efficients of the eigenfunctions in (2.9) using collocation, based on a desired ar-
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rangement of elements, source terms, material properties, and the number and

spacing of collocation points (§2.6). The second step evaluates (2.9) for various

values of the independent variables, xi, using the known coefficients (§2.7). One

can evaluate the solution anywhere and analytically manipulate the solution (e.g.,

differentiate and integrate Φ̄(x) for fluxes or streamfunction), a benefit of LT-AEM

over gridded solutions.

LT-AEM uses the concepts of active and passive elements. Passive elements

have specified strength (Akj and Bk
j are known before run-time), while active ele-

ments have total head or flux specified so that the coefficients of different elements

depend on each other.

2.3.1 Geometric considerations

The geometry of the problem, the coordinate system used to solve the problem,

and the behavior of the eigenfunctions that arise from separation of variables are

interrelated. All coordinate systems in which (2.3) is separable can be derived

from Cartesian coordinates using conformal mapping (Morse and Feshbach, 1953,

p.499); the geometry can therefore also be related to the mapping function used

to derive the working coordinate system. Table 2.1 categorizes elements related to

Helmholtz-separable 2D coordinates where EE can be performed. 3D Helmholtz-

separable coordinates are considered in section 3.4. Elliptical coordinates are the

most general 2D coordinates; polar, parabolic, and Cartesian coordinates can be

obtained by moving the elliptical foci together or moving one or both of the foci

to∞, respectively. The “concentration points” of the coordinate systems (singular

points in the conformal mapping function) are related to the singularities of the

ODEs obtained from separating the PDE (Moon and Spencer, 1961b, §6). The so-

lution of ODEs can be characterized by the location and type of singularities that

arise, both geometrically and analytically (Ince, 1956, §20).
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coordinate finite singular infinite modified Helmholtz
system boundary element boundary special functions

Cartesian none ∞ line line exponential
circular circle point ray modified Bessel
elliptical ellipse line segment hyperbola modified Mathieu
parabolic none semi-∞ line parabola parabolic cylinder

TABLE 2.1. Helmholtz-separable 2D coordinate systems

Singular elements are the fundamental unit of the coordinate system, arising

when one or more of the coordinates→ 0 (Arscott and Darai, 1981); they are gen-

erally sources or sinks (see Table 2.1), due to their reduced dimensionality. Areas

can either be defined by finite boundaries, leading to a finite areas, or alternatively

by infinite lines, leading to infinite areas. Circles and ellipses partition the 2D do-

main most conveniently; their perimeters have finite length and they encompass

a finite area, resulting in periodic Sturm-Liouville expansions along their bound-

aries. For circular and elliptical coordinates, the finite boundary is parametrized

by an angle; for the physical problems considered here, the function must be 2π

periodic in this angle.

As derived and implemented here, LT-AEM elements should not touch or over-

lap. When elements do intersect, the boundary condition along their circumference

will not be periodic, significantly degrading convergence. The Gibb’s phenomenon

and some potential methods to alleviate it are discussed in section D.2, as well as

by Janković (1997) in the context of steady-state AEM.

2.3.2 Sturm-Liouville

The types of ODEs solved here can be related to those in Sturm-Liouville theory.

The ODEs that arise from separation of variables (2.8) can be written in the general

form of the Liouville equation

d

dz

[
p(z)

dψ

dz

]
+ ψ [q(z) + λr(z)] = 0 (2.10)
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where λ is the separation constant, the problem is considered over the range a ≤

z ≤ b, and the functions p, q, and r are characteristic of the coordinate system used

in separating the governing PDE into ODEs (Morse and Feshbach, 1953, p.719).

Equation 2.10 has boundary conditions associated with it at z = a and z = b,

whose type determines the nature of the solution. Simple, homogeneous boundary

conditions lead to a one-to-one correspondence between λ and ψ, often signified

by λn and ψn, since the eigenvalues can be mapped onto the non-zero integers.

This is referred to as the standard Sturm-Liouville problem, but it does not arise in

the current application.

A boundary condition that ensures the independent variable is periodic, ψ(a) =

ψ(a + 2π) = ψ(b), similarly leads to integer eigenvalues, but due to the ambiguity

in the boundary condition there is a duality of eigenfunctions for each eigenvalue

(Morse and Feshbach, 1953, p.726). This periodic domain leads to the singular

Sturm-Liouville problem. When expanding a circular boundary in polar coordi-

nates (r = r0,−π ≤ θ ≤ π), the nth eigenfunctions are sin(nθ) and cos(nθ), the

eigenvalues which force these functions to be periodic in 2π are found to be the in-

tegers by inspection. The eigenfunctions and eigenvalues in elliptical coordinates

also exhibit this even/odd duality, and can be mapped onto the integers, but the

numerical values of the eigenvalues depend on parameters appearing in the ODE

therefore they must be computed in a more general manner (see Appendix E).

Another deviation from the standard Sturm-Liouville case occurs when the

length of the domain becomes infinite; the totality (i.e., spectrum) of the eigen-

values for the Sturm-Liouville problem changes from the denumerably infinite

integers to an infinite continuum of real numbers. For example, Cartesian coor-

dinates or curves of constant angle in circular or elliptical coordinates lead to this

type of infinite domain (Courant and Hilbert, 1962, §5.12). When the boundary

being expanded becomes infinite in length there is no simple periodicity in the in-

dependent variable, and no manner to parametrize the entire curve with a finite
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quantity.

This transition is illustrated through the relation between a Fourier series and

Fourier transform, both of which are ways of representing a continuous function

using trigonometric series (Morse and Feshbach, 1953, p.454). We begin with a

type of standard Sturm-Liouville problem, the Fourier sine series of f(x) in the

region 0 ≤ x ≤ `, with conditions f(0) = f(`) = 0;

f(x) =
∞∑
n=0

An sin
(nπx

`

)
, (2.11)

which, using orthogonality, leads to the integral coefficient expressions

An =
2

`

∫ `

0

f(x) sin
(nπx

`

)
dx, (2.12)

that inserted back into (2.11) gives

f(x) =
2

`

∞∑
n=0

[∫ `

0

f(ζ) sin

(
nπζ

`

)
dζ

]
sin
(nπx

`

)
. (2.13)

We introduce the variable k, which at discrete values is kn = nπ/`; the spacing

between the discrete values is ∆k = kn+1 − kn = π/`. This simplifies (2.13) to

f(x) =
2

π

∞∑
n=0

∆k

[∫ `

0

f(ζ) sin (knζ) dζ

]
sin (knx) , (2.14)

where, in the limit as `→∞, the sum becomes an integral (the spectrum of eigen-

values for the Sturm-Liouville problem becomes continuous); ∆k → 0 and kn → k.

This leads to the Fourier sine transform pair (both a forward and inverse trans-

form),

f(x) =
2

π

∫ ∞
0

∫ ∞
0

f(ζ) sin(kζ) dζ sin(kx) dk, (2.15)

which via symmetry can be extended to the more commonly used doubly infi-

nite range. In the limit as ` → ∞, the number of eigenvalues increases from the

countably infinite integers n = 0, 1, 2, . . . to the uncountably infinite positive real

numbers, 0 ≤ k < ∞. This illustrates how the spectrum of eigenvalues for the
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standard or periodic Sturm-Liouville problem (e.g., boundary matching along a

circle in polar coordinates or an ellipse in elliptical coordinates) is not as dense as

the spectrum of eigenvalues needed for an infinite interval.

In implementation, the continuous spectrum is approximated discretely (mak-

ing ` large but finite in (2.14)), but with less accuracy than the standard Sturm-

Liouville expansion. When expanding boundary conditions on an infinite interval

(e.g., expanding the effects of a point source along a 2D Cartesian boundary sep-

arating two regions of different materials — see section 3.3), we deal with two

infinite quantities: the number of terms in the eigenfunction expansion, N , and the

width of the interval, `, over which they are distributed (Boyd, 2000, §17).

2.4 Convolution

Convolution is a special type of superposition, usually applied to the time vari-

able. It is used to create general time behaviors from impulse response functions.

Rather than requiring each LT-AEM element to have every possible distinct tem-

poral behavior associated with it, elements are derived for the “unit” impulse case,

which can then be readily made into any desired time behavior via convolution.

The Fourier and Laplace transforms both have convolution properties (Churchill,

1972, §17 & 123). Convolution in the time domain becomes simply multiplication

in the Laplace domain, therefore LT-AEM allows for separate handling of the tem-

poral, ḡ(p), and spatial, Φ̄imp(x), behavior of elements. Essentially, space behavior

is handled with the AEM (i.e., spatial superposition with boundary matching),

while time behavior is handled using Laplace-space convolution.

2.4.1 Duhamel’s theorem

Duhamel’s theorem states that a general response is the weighted mean of past

time behavior, with the weight being the impulse response function (Özişik, 1993,
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§5). Duhamel’s convolution integral for a general time response, h(t), is

h(t) =

∫ t

0

e(t− τ)g(τ) dτ (2.16)

where e(t − τ) is the impulse response (reversed with respect to the dummy vari-

able of integration, τ ), and g(τ) is the time behavior (see Figure 2.1). The integral

FIGURE 2.1. Impulse response (left) and time behavior (right) functions

is only carried out over 0 < τ < t, because the behavior in the future cannot affect

the current response. Often we re-define the impulse response as

e0(t− τ) =

{
e(t− τ) τ ≤ t
0 τ > t

(2.17)

making e0 a causal function (Ben-Menahem and Singh, 2000, §K); then we can ex-

tend the upper integration limit to∞,∫ ∞
0

e0(t− τ)g(τ) dτ = e0(t) ∗ g(t). (2.18)

The Laplace transform of the convolution operator (∗) is multiplication of the cor-

responding Laplace-space image functions,

L [e0(t) ∗ g(t)] = ē0(p)ḡ(p); (2.19)

since multiplication in Laplace space is commutative and L is linear, convolution

is also commutative and linear.

2.4.2 Convolution example

The point source (well) solution is illustrated to compare the two methods of per-

forming convolution. In the time domain, the response, Φwell(r, t), at a distance r



36

from a well pumping at the rate Q(t) [L3/T], is found by convolution of the unit

well response with Q(t). Using the impulse 2D point source (3D line source) from

Carslaw and Jaeger (1959, §10.3), Duhamel’s integral for a well with arbitrary time

behavior is

Φgeneral(r, t) = Φimp(r, t) ∗Q(t)

=
1

4π

∫ t

0

exp

(
− r2

4(t− τ)α

)
Q(τ) dτ

t− τ
, (2.20)

where the upper limit of integration is kept at t, since without introducing a step

function, the impulse solution 6= 0 for τ > t. The Laplace transform of (2.20), from

tables of Laplace transform pairs, is

Φ̄general(r, p) =
1

2π
K0

(
r
√

p
α

)
Q̄(p), (2.21)

where K0(z) is a second-kind zero-order modified Bessel function (e.g. McLach-

lan, 1955, §6). In the case where Q(t) is a constant, the integral in (2.20) can

be recognized as an exponential integral, through the change of variables ξ =

r2/ [4α(t− τ)]. This substitution leads to

Φconstant(r, t) =
Q

4π
E1

(
r2

4αt

)
, (2.22)

where E1 is the exponential integral (e.g. Abramowitz and Stegun, 1964, §5). (2.22)

is the Theis (1935) solution for drawdown due to a well pumping at a constant rate.

Since L(c) = c/p, the solution when Q(t) is a constant is in Laplace space

Φgeneral(r, t) =
Q

2π
L−1

[
1

p
K0

(
r
√

p
α

)]
=

Q

2π

1

2

∫ ∞
r2

4αt

e−u

u
du, (2.23)

which is found by looking up the inverse transform in a table (e.g. Carslaw and

Jaeger, 1959, p.495) or by computing the inverse using Mellin’s contour integral

(A.4) (e.g. Lee, 1999, §3.2.4). As would be expected, both approaches lead to the

exponential integral.
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In this example, both the time convolution integral and the Laplace space con-

volution can be readily evaluated. In more general cases, the convolution integral

cannot be evaluated in closed form or in terms of simple functions. Similarly, the

inverse Laplace transform is typically unknown, but can be readily evaluated us-

ing a numerical inverse Laplace transform.

Utilizing the Laplace transform makes general time behavior in LT-AEM far

more flexible, accurate and straightforward, compared to other transient AEM

methods. Where transient elements are used directly (Zaadnoordijk and Strack,

1993), each different time behavior (constant in time, pulse in time, etc.) requires

deriving a new element or evaluating a new time-domain convolution integral.

The Fourier transform approach of Bakker (2004b,c) could potentially use the sim-

ilar convolution properties of the Fourier transform.

2.4.3 Time behaviors for aquifer tests

While aquifer tests are commonly performed with pulse or step pumping rates,

many other pumping schemes are also in use. Slug tests (Hvorslev, 1951; Cooper

et al., 1967) use a nearly-instantaneous addition or removal of water from the well

as the impulse; they are often used in low-permeability environments or situations

where no pump is available. Step tests (i.e., pumping at 3-5 increasing levels) can

be used to estimate both aquifer parameters and pumping well efficiency (Jacob,

1947; Rorabaugh, 1953). Hantush (1964a) developed analytic solutions for flow to

a well in a confined aquifer pumping at exponentially-, hyperbolically-, and 1/
√
t-

decaying discharge rates. He characterized these as “uncontrolled” pumping rates,

which decayed due to the additional work required to lift water from greater depth

as the test proceeded. Black and Kipp (1981) treated sinusoidally-varying pumping

rates as a way to increase the diagnostic capacity of an aquifer test. Rasmussen

et al. (2003) used this approach, showing how the effects of several pumping wells,
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each with its own characteristic amplitude and phase, can be deconvolved from

observation data.

All of these different pumping behaviors, as well as arbitrary rates, are sim-

ply handled in LT-AEM by multiplying the impulse well solution in the Laplace

domain with the Laplace transform of the desired temporal behavior (e.g. Prud-

nikov et al., 1992) and then inverting the Laplace domain solution analytically or

numerically. Additionally, this treatment of general temporal behavior is not re-

stricted to well pumping rates; other boundary conditions or source terms can also

be handled in this manner.

2.5 Boundary matching

LT-AEM uses boundary matching to combine solutions, while maintaining the net

required boundary condition. Elements are derived using EE, therefore bound-

aries are curves of constant coordinates; when multiple elements do not share a

common coordinate origin, their boundary conditions cannot be handled gener-

ally using the EE approach alone. For example, with two non-concentric circles,

each circle only appears as a simple expression in its own coordinate system. For

the more general case, a Jacobian must be used to express flux in one system in

terms of the coordinates of another system (see Appendix B).

2.5.1 Simple illustrative example

Using a cross-sectional “view” of a simplistic well-river combination (ignoring

transient effects), Figure 2.2 shows how boundary matching is carried out for a

simple system with one active and one passive element. The curve in Figure 2.2A

shows the drawdown due to the pumping well (2.22), at first ignoring the effects of

the nearby river. The well is a passive element, where Q is the volumetric flowrate
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FIGURE 2.2. Conceptual boundary matching example for well and river

leaving the well [L3/T]; it is assumed that this constant pumping rate can be main-

tained no matter how large the drawdown becomes. The river is an active element,

where the specified head is hBC [L]; it is assumed there is an adequate source of wa-

ter in the river to maintain this head.

Because the well is a passive element, the drawdown it creates does not depend

on any other elements, only Q and α (aquifer parameters). The river is an active

element; its effects depend on hBC and α, but the strength of the element cannot be

known without knowledge of the effects that the other elements have at this loca-

tion. The amount of water that it adds (or removes) from the aquifer is a function
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of the amount of head it must “make up” to bring the background conditions up

to the specified boundary condition (see top-left of Figures 2.2A and B).

In Figure 2.2B, the effects of both elements are illustrated in the cross-section in

terms of areas. The drawdown from the initial state due to the well is the lower

(darker) shaded area, while the mounding due to the river accounting for the ef-

fects of the well at the river is the upper (lighter) area. The river mounding is

shifted up to a common baseline with the well; the areas would otherwise over-

lap. The background condition at the river (the net effects of other elements at this

location) in this case is just the drawdown due to the well at the boundary of the

river. Figure 2.2 C shows the results of superimposing these two solutions, which

itself is also a solution (due to superposition), and by construction also satisfies the

three boundary conditions:

1. Q leaving the aquifer at the well,

2. hwell + hriver = hBC at river,

3. drawdown=0 at large distance.

This example is additionally complicated by time, represented through the

Laplace parameter p. The Laplace parameter lacks an exact physical meaning (see

Appendix A), therefore complicating plots. The simple example would be addi-

tionally complicated by the presence of multiple active elements, requiring an iter-

ative solution for the head effects at each active element.

2.5.2 Boundary conditions

A circle can be said to cut the 2D plane into two complimentary regions, the in-

terior and exterior (see Figure 2.3). The two domains share a radial coordinate

system, centered on the circle. The coordinate system has singularities at r = 0

and r = ∞, one associated with each element in this case. The singular points
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of polar coordinates are related to the fact that the differential element, r dr dθ (an

expression of area), is not finite at these two locations. The differential element

in a general curvilinear coordinate system is given in terms of the system’s metric

coefficients (see Appendix B for metric coefficients of the coordinate systems given

in Table 2.1).

FIGURE 2.3. Interior and exterior circular elements

LT-AEM elements, which themselves are functions of the coordinates, must

produce physically plausible solutions, even when coordinates → 0 or ∞. Usu-

ally, this condition is satisfied automatically through the proper choice of basis

functions.

In polar and elliptical coordinates, the condition that the function be periodic

in 2π in the independent variables leads to the eigenvalues for the set of ODEs

(§2.3.2); the complete solution for arbitrary BC is the superposition of all the solu-

tions corresponding to every possible eigenvalue. For the radial ODE, only one of

the two types of solutions is used based on basis function behavior at the singular

points r = 0 and ∞. Both solutions can be used in regions without singularities,

(e.g., an annulus in polar coordinates) but these are also handled by superimposing

two elements.

BC matching is used to determine Akj and Bk
j in (2.9); the BC can be Dirichlet,

Neumann, or mixed type. Interface BC (i.e., matching or continuity conditions)

are posed along boundaries between areas cases where we want a smooth solution

and smooth flux across the boundary. A mixed BC along the circumference of an
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LT-AEM element is, in its most general form,

ξ∇Φ̄ · n + ζΦ̄ = F̄ (s, p), (2.24)

where n is a unit normal and s is arc length or an angle that parametrizes the

boundary. Setting ξ = 0 and ζ = 1 leaves a Dirichlet BC, F̄D(s, p) = Kh̄BC(s, p),

the transformed potential along the circumference of the element. With ζ = 0 and

ξ = 1, (2.24) becomes a Neumann BC where now F̄N(s, p) = ∇Φ̄BC(s, p) · n is the

transformed specified flux normal to the element boundary.

FIGURE 2.4. Example with active no-flow ellipse, passive point sources and active
circular matching element with different α inside and out (+ and − “parts” of
matching element offset for clarity)

A matching BC can be considered to be both an external and internal element

at the same physical location (see Figure 2.3 and the double circle in Figure 2.4);

each boundary condition is specified in terms of the total (“tot”) head due to all

visible elements. A Neumann and Dirichlet BC are posed on each side, setting

F̄+
N (s, p) = F̄−N (s, p) and (K−/K+)F̄+

D (s, p) = F̄−D (s, p). Typically specifying both

head and flux boundary conditions overdetermines a diffusion problem, but here

the pair only ensures continuity; values are not assigned, only equality between

inside and outside. It is noted that mathematically the “inside” and “outside”

elements associated with an interface condition can be considered as different ele-

ments (having different indices, k), but here they are referred to using the ± nota-

tion, since they are different sides of the same element.

Passive element BC are specified in terms of q̄k ·n or h̄k of individual elements,
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where

q̄ = −∇Φ̄ = −K∇h̄ (2.25)

is the Laplace-transformed Darcy flux [L]; they can be combined without iterating

via simple superposition. Active element BC (Figure 2.4) are specified in terms

of total discharge potential
(
Φ̄tot =

∑
k Φ̄k

)
or normal flux

(
n · q̄tot =

∑
k n · q̄k

)
; if

there are at least two active elements, their strengths must be determined simulta-

neously.

Most elements of interest in LT-AEM are active elements; circles and ellipses

which define regions of different aquifer properties or source terms are typically

active. A line or point source can be active or passive; if the total flowrate at the

well or line is specified, it is passive (like a Theis well). If the total head is specified

at the well (like a sump or dewatering pump that is used to keep an excavation

dry) the element becomes active, because its strength depends on the surrounding

conditions.

FIGURE 2.5. Matching locations on a circular boundary

To determine active element coefficients, M collocation points are chosen along

the matching boundaries (see Figure 2.5), where the ± sides of an element meet,

creating a system of 2M equations (M normal flux and M head) and 4N − 2 un-

knowns (N for even functions, but only N − 1 for odd ones). Following the AEM

overspecification approach of Janković (1997), we choose 2M ≥ 4N − 2 and the

system of equations is solved in a least-squares sense. Overspecification is consid-

ered to produce a smoother solution than the even-determined case 2M = 4N − 2

does, and for the same M , N is smaller (i.e., the solution does not require the
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2M − (4N − 2) highest harmonic basis functions). The inclusion of more control

points, beyond those needed to make the system evenly determined, is not a great

computational cost; these extra points tend to improve the quality of the solution.

For these reasons, overspecification is here used in LT-AEM applications.

2.5.3 Detailed boundary matching example

The details regarding boundary matching are introduced using the simple AEM

example shown in Figure 2.6; it includes two point sources and nested circles of

different hydraulic conductivity.

Head matching Head matching ensures no energy is gained or lost when crossing

the boundary (hydraulic head is a measure of energy per unit weight of water)

and enforces a “smoothness” in the final solution. It can be expressed generally for

each matching element as

h̄n+
tot (rn0) = h̄n−tot (rn0); (2.26)

the total heads (due to all contributing elements) immediately interior (−) and

exterior (+) to the nth element boundary are equal. The total head is due to the

FIGURE 2.6. Example of three active circular elements of different K (background
K0) and two passive point sources, Q4 and Q5

current element (n) and all elements in the background of the current element.
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Expanding (2.26) in terms of its components and Φ̄, leads to

1

Kn+

Φ̄n+ +

Nbg+∑
k=1
k 6=n

Φ̄k


rn0

=
1

Kn−

Φ̄n− +

Nbg−∑
k=1
k 6=n

Φ̄k


rn0

, (2.27)

where Nbg± is the number of elements in the inner and outer background of the

element, and rn0 indicates all elements in this expression are evaluated on the

boundary of element n. For element 2± in Figure 2.6, element 3+ makes up the

“inner background”, while element 1+ and Q4 are in the “outer background”. In

Figure 2.7 the hierarchy of elements is illustrated as a tree; background elements

include the parent element and all elements that share the same parent (connected

by a dashed line in Figure 2.7). Expression 2.27, for head matching on the bound-

ary of element 2 would be

1

K0

[
Φ̄2+ + Φ̄1+ + Φ̄4

]
r20

=
1

K2

[
Φ̄2− + Φ̄3+

]
r20
, (2.28)

where the element number is super-scripted (point sources need no sign). Point

source Q5 and circles 1− and 3− do not appear in this expression, as they are nei-

ther immediately internal nor external to element 2 (see Figure 2.7). This distinc-

tion is adopted here to allow regions with different PDEs to be matched; this is a

requirement for the modified Helmholtz equation (due to the appearance of the

material properties in the PDE), but not for the Laplace equation (the case con-

sidered by Strack et al. (1999)), where the material properties only appear in the

definition of Φ.

Normal flux matching Flux matching applies to the same set of elements in head

matching, but is a statement that mass is not stored or lost at the boundary, since a

net difference in mass flux implies mass storage. This is expressed at each match-

ing element as

nn · q̄+
total(rn0) = nn · q̄−total(rn0) (2.29)
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FIGURE 2.7. Tree representation of element hierarchy in Figure 2.6; ∞ represents
the background between the elements

where the subscript on the normal indicates the element it is associated with. (2.29)

states that the total normal flux across the element boundary is balanced. For Fig-

ure 2.6, in terms of Φ̄, the flux balance across element 2 is[
∂Φ̄2+

∂r2

+
∂Φ̄1+

∂r1

Jr1r2 +
1

r1

∂Φ̄1+

∂θ1

Jθ1r2 +
∂Φ̄4

∂r4

Jr4r2

]
r20

= (2.30)[
∂Φ̄2−

∂r2

+
∂Φ̄3+

∂r3

Jr3r2 +
1

r3

∂Φ̄3+

∂θ3

Jθ3,r2

]
r20

,

where subscripts on r and θ indicate the associated element and Jθ1r2 = ∂θ1
∂x

∂x
∂r2

+

∂θ1
∂y

∂y
∂r2

is a Jacobian; each of these coordinate derivatives can be computed explicitly

(see Appendix B for details and examples). Φ̄ for each element is defined in terms

of a local coordinate system; differentiation with respect to local coordinates (e.g.,

∂Φ̄2+/∂r2) leads to simple expressions, compared to working in a single global

coordinate system everywhere.

2.6 Solution for coefficients

The solution for the coefficients of active elements in an LT-AEM problem can be

posed in three ways

• a fixed-point iteration over active elements, each iteration solving a small

least-squares problem for the coefficients of a single element;
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• a direct least-squares solution for the coefficients of all active elements simul-

taneously;

• analytical solution for coefficients in certain simple geometries through eigen-

function orthogonality; quadrature can be used to approximate these inte-

grals.

Many AEM problems are solved using the fixed-point iteration; it requires the

least amount of the problem to be kept in computer memory at a time. The ready

availability of parallelized LAPACK (Anderson et al., 1990) and BLAS (Blackford

et al., 2002) linear algebra libraries, makes the direct matrix solution method more

feasible and in some cases much faster than the iterative method. Program logic

and code size are improved for the direct approach as well.

2.6.1 Fixed-point iteration

When posing multiple active boundary conditions as a fixed-point iteration, only

the coefficients of the “current” element are computed, all other unknown coeffi-

cients are assumed known. We use the previous example from section 2.5. Starting

with element 1 as the current element, head matching one boundary 1 is put into

the form

Φ̄1+(r10)

K0

− Φ̄1−(r10)

K1

=
Φ̄5(r10)

K1

− 1

K0

[
Φ̄2+(r10) + Φ̄4(r10)

]
, (2.31)

where the inside and outside coefficients of the current element (1) are on the left

side, all passive and background active elements are on the right side. This equa-

tion is posed at M evenly-spaced matching locations around the circumference of

element 1 (2π
M
k; k = 1, 2, . . . ,M) – see Figure 2.5, in terms of the 4N − 2 coefficients

of element 1 (2N − 1 for each side). For example, the Φ̄1+ term in (2.31) can be
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expanded using the definitions in terms of the eigenfunction expansions (2.9) into
ξ0(r10)φ0(θ1) . . . ξN−1(r10)φN−1(θ1)
ξ0(r10)φ0(θ2) . . . ξN−1(r10)φN−1(θ2)

...
...

ξ0(r10)φ0(θM ). . .ξN−1(r10)φN−1(θM )︸ ︷︷ ︸
even angular functions

ξ1(r10)ψ1(θ1) . . . ξN−1(r10)ψN−1(θ1)
ξ1(r10)ψ1(θ2) . . . ξN−1(r10)ψN−1(θ2)

...
...

ξ1(r10)ψ1(θM ). . .ξN−1(r10)ψN−1(θM )


︸ ︷︷ ︸

odd angular functions

, (2.32)

a M × 2N − 1 coefficient matrix, which is multiplied by the coefficient vector

x = [A0, . . . , AN−1, B1, . . . , BN−1]T ,

following the convention of (2.9). The flux matching equation on the same bound-

ary is similarly written

n1 ·
[
q̄1+(r10)− q̄1−(r10)

]
= n1 ·

[
q̄5(r10)− q̄2+(r10)− q̄4(r10)

]
; (2.33)

expressing the flux in terms of derivatives and Jacobians gives[
∂Φ̄1+

∂r1

−∂Φ̄1−

∂r1

]
r10

= (2.34)[
∂Φ̄5

∂r5

Jr5r1 −
∂Φ̄2+

∂r2

Jr2r1 −
1

r2

∂Φ̄2+

∂θ2

Jθ2r1 −
∂Φ̄4

∂r4

Jr4r1

]
r10

.

An analogous set of equations is made, with each active element taking the role of

the “current” element in turn. In this formulation, 3 small least-squares problems

are solved (one for each of the active elements), for each iteration; the background

effects (right hand side) are constantly being updated as iterations continue.

In matrix form, (2.31) and (2.34) for element 1 are

Ax = b[
1
K0

Φ̄1+ − 1
K1

Φ̄1−

∂Φ̄1+

∂r1
−∂Φ̄1−

∂r1

]
=

[
1
K1

Φ̄5 − 1
K0

(
Φ̄2+ + Φ̄4

)
∂Φ̄5

∂r5
Jr5r1 − ∂Φ̄2+

∂r2
Jr2r1 − 1

r2
∂Φ̄2+

∂θ2
Jθ2r1 − ∂Φ̄4

∂r4
Jr4r1

]
(2.35)

where, for notational simplicity, Ax is given together on the left hand side in terms

of Φ̄. Since everything in b on the right of (2.35) is assumed constant in the current
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iteration, these terms reduce to a vector of length 2M . A is a matrix of size 2M ×

4N − 2. Increasing the number of active elements only complicates the calculation

of b, and increase the number of iterations required overall, it does not increase

the size of each individual A.

The fixed-point iteration described here is equivalent to a block Gauss-Seidel it-

eration, since computed coefficients are used immediately in the next available cal-

culation (Isaacson and Keller, 1966, §2.4). The iterative approach can be improved

slightly using block successive over-relaxation (SOR), where a weighted combina-

tion of the current and previous iterations are used to increase convergence; this

method is simple to implement, but does not lead to large improvements over the

simplistic Gauss-Seidel method.

2.6.2 Direct matrix approach

In the direct formulation we solve for all active elements simultaneously. This

significantly increases the size of A, but eliminates the need to iterate. A used in

the fixed-point iteration are the diagonal sub-block elements of the direct method;

see the shaded blocks in (2.36). The effects of one active element on another (in

b of (2.35)) become the off-diagonal terms in (2.36). The matching equations for

element 1, (2.35), along with the analogous expressions for matching head and

flux on elements 2 and 3, becomes the diagonals when the entire problem is given

in matrix form, the left-hand side (Ax) is

Φ̄1+

K0
− Φ̄1−

K1

Φ̄2+

K0
0 0 0

n1 · q̄1+ −n1 · q̄1− −n1 · q̄2+ 0 0 0
Φ̄1+

K0
0 Φ̄2+

K0
− Φ̄2−

K2
− Φ̄3+

K2
0

n2 · q̄1+ 0 n2 · q̄2+ −n2 · q̄2− −n2 · q̄3+ 0

0 0 0 Φ̄2−

K2

Φ̄3+

K2
− Φ̄3−

K3

0 0 0 n3 · q̄2− n3 · q̄3+ −n3 · q̄3−


(2.36)
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and the right hand side (b) is 

Φ̄5

K1
− Φ̄4

K0

n1 · [q̄5 − q̄4]

− Φ̄4

K0

−n2q̄
4

0
0


. (2.37)

In (2.36) the off-diagonal flux terms involving two circular elements have both r

and θ components, as in (2.34). In the direct matrix form, only passive elements

(here wells) and specified BC values appear in b. Each entry in this matrix for-

mulation is itself a smaller M × 2N − 1 matrix, as was the case in (2.35). In this

block-matrix formulation, several things become clearer, compared to the iterative

formulation:

1. not every element “sees” every other element (Figure 2.7). This is a type of

domain decomposition, referred to as substructuring;

2. different ± sides of each matching element can be considered separate enti-

ties, appearing as columns in the A matrix;

3. it is possible to determine the coefficients analytically using orthogonality

and numerical integration;

4. other types of iterative methods can be used to solve for x.

The matrix in equation (2.36) is n2M × n(4N − 2), where n is the number of active

elements. As more active elements are added the matrix becomes larger. A is non-

symmetric and its sparseness is a function of whether the elements are nested. If

all elements are at the same “level”, in the same background (same parent in Fig-

ure 2.7), then each element is effected by every other element, resulting in A being

full. When an active element appears inside another active element, A will have

some zero off-diagonal entries. Outside their circumscribing element, the inside
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elements are not seen; the effects of elements inside it are propagated outside it

using the large element’s basis functions, often simplifying calculations.

The non-overlapping domain decomposition method known as substructuring

(Smith et al., 1996, §4) is commonly applied to gridded problems, but can also be

applied to the matrix problem for the generalized Fourier series coefficients posed

here. The concept is based on the principle that portions of the domain, which are

loosely coupled, can be solved independently or nearly independently (the benefit

coming from solving them in parallel). For example, in Figure 2.6 element 2 is

the only connection between elements 3 and 1. In cases where many elements are

nested inside one larger element, the larger element can be decomposed into its

inner and outer contributions. Then these problems can be solved independently

and finally re-combined. Quarteroni et al. (2000, §3.9.2) give an illustrative worked

example of this approach.

The fixed-point (Gauss-Seidel) iteration is one possibility of solution method

for both AEM and LT-AEM (Furman and Neuman, 2003). When the problem

is posed in matrix form, (2.36 and 2.37), to allow direct solution, any matrix so-

lution technique that is applicable to over-determined systems could be applied.

This includes general iterative techniques, such as bi-conjugate gradient or quasi-

minimum residual methods (e.g. Freund and Nachtigal, 1991). The direct method

can lead to round-off error in the solution, especially when there is a large con-

trast in properties between elements. The direct solution can be improved using

an iterative approach if high accuracy is desired.

Analytic solution for coefficients When posing the problem in the direct matrix form,

we can compute the coefficients analytically, using orthogonality and Cramer’s

rule. This approach is similar to handling the whole problem using traditional an-

alytic EE techniques; there is no least-squares solution in the boundary-matching

problem. The generalized Fourier series coefficients are found via orthogonality
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integrals, generally it is only possible to evaluate these integrals in closed form

when the active elements share a coordinate (e.g., they are confocal or concentric).

For example, a closed-form solution would be possible for a point source at the

center of a circular boundary, a line source at the focus of an elliptical domain, or a

layered Cartesian problem. In general, for 2D (see Table 2.1) this includes solutions

comprised of both a singular and finite or infinite element of the same coordinate

system. Other combinations of geometries typically would not lead to closed-form

solutions for the coefficients.

For a system of n unknowns, Cramer’s rule requires the evaluation of n + 1

determinants of size n (e.g. Householder, 1975, §5). Because of the large computa-

tional requirements, this method would be impractical for n ≥ 5.

Two LT-AEM applications that could capitalize on analytically-derived coeffi-

cients include the Post-Widder inverse approach (§5.3.1) or analytic calculation of

parameter sensitivities required for an inverse problem (e.g., ∂Φ̄
∂K

or ∂Φ̄
∂SS

). Both are

possible if analytic (or high accuracy) derivatives can be computed with respect to

model parameters or (in the case of the Post-Widder inverse) the Laplace parame-

ter.

Quadrature approach to coefficients Numerical quadrature can be used to extend an-

alytic approach described above beyond simple combinations of concentric ele-

ments. In situations where the orthogonality integrals can be posed, but not com-

puted in closed form, numerical quadrature could be applied. The simplest ap-

proach would be to uniformly subdivide the 2π boundary, using the the trapezoid

rule or Chebyshev quadrature. This would result in a very similar formulation to

the least-squares collocation approach, but without the explicitly posing the least

squares problem. Boyd (2000, §4.3) posits that the quadrature and collocation ap-

proaches are operationally equivalent; they are just different ways of utilizing the

function sampling points along the boundary of the element. As an alternative to
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using the trapezoid rule or some other method with fixed abscissa, an adaptive

integration routine (e.g., QUADPACK, which utilizes Gauss-Kronrod quadrature

(Favati et al., 1991)) could be used. Adaptive methods increase the number of

sample points where needed to achieve a target error tolerance, allowing the col-

location points to be adaptively clustered where they would be needed most (e.g.,

near singularities where gradients are steeper).

A potential advantage of the quadrature approach is that some integrals that

cannot be evaluated in closed form, would be readily evaluated numerically. The

difficulty in a numerical integration is proportional to the ability of the function

to be fitted with polynomials of some sort. If two active elements are distant from

each other, a low-order polynomial approximation may be appropriate and more

efficient than utilizing the full set of proper basis functions arising from the stan-

dard approach.

As an example, the quadrature approach is illustrated on the first row of (2.36)

in the coordinates of element 1. This cannot be computed analytically, due to the

fact that the integral of the off-diagonal terms with respect to the angular coordi-

nate of element 1 cannot be evaluated in closed form. Multiplying the first row of

(2.36) and (2.37) by the even basis functions of Φ̄1±, cosmθ1, and integrating over

−π < θ1 < π, gives the following expression

a1+
m

K0

− a1−
m

K1

+
1

K0

∫ π

−π
cos(mθ1) Φ̄2+(r2, θ2) dθ1

=

∫ π

−π
cos(mθ1)

[
Φ̄5(r5)

K1

− Φ̄4(r4)

K0

]
dθ1, (2.38)

where the first two integrals were reduced to the mth unknown coefficient using

orthogonality, and the rest of the integrals can be evaluated numerically. A similar

procedure is performed for the odd basis functions, sinnθ1, resulting in an analo-

gous set of equations for b1+
m and b1−

m involving similar integrals.

The other rows of the matrix are handled analogously, with the even and odd
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basis functions of each element being multiplied and integrated with all the other

terms. Orthogonality of each element’s basis functions is used to evaluate the in-

tegrals falling on the shaded diagonal blocks in (2.36).

The larger matrix problem for all n(4N − 2) coefficients is now broken into N

smaller matrix problems, as the orthogonality of the eigenfunctions has been used

to decouple the solutions for the different coefficients.

2.6.3 Computation of least-squares solution

In both the fixed-point and direct matrix approaches, least-squares problems will

need to be solved numerically for the generalized Fourier series coefficients. For

robustness, we take a QR decomposition approach rather than solving the normal

equations.

Normal equations The normal equations are conceptually simpler and require fewer

operations than QR decomposition, and are therefore commonly used. Beginning

with Ax = b and pre-multiplying both sides by AT , we create a Hermitian (and

therefore invertible) matrix

ATAx = ATb. (2.39)

Pre-multiplying by the inverse of ATA results in an expression for x often referred

to as the generalized inverse (Menke, 1984, §4.1),

x = (ATA)−1ATb, (2.40)

= G−gb, (2.41)

which is the traditional solution to the normal equations. This approach is appeal-

ing because after computing G−g once, it only requires one matrix-vector multi-

plication to compute x for each new b. Unfortunately, numerical problems plague

this approach. When the square matrix ATA is formed, much of the numerical
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detail of A can be lost (Golub and van Loan, 1996, §5.3.2). To obtain the same accu-

racy using the generalized inverse as obtained using QR decomposition, a higher

working precision must be used in the calculation (Lawson and Hanson, 1974, §19).

QR decomposition The least-squares problem is solved via QR factorization by sup-

posing first that a Q (a matrix comprised of orthogonal column vectors) has been

found such that

QTA = R =

[
R1

0

]
, (2.42)

where R1 is upper triangular (Wilkinson, 1965, §9.28). The product of the trans-

posed orthogonal matrix and the right-hand side is decomposed as

QTb =

[
c
d

]
, (2.43)

where c is conformal with R1. The least-squares problem is the minimization of

the solution residual, here quantified in terms of a squared matrix norm,

||Ax− b||22 = ||QTAx−QTb||22, (2.44)

= ||R1x− c||22 + ||d||22, (2.45)

where ||x||2 is the Euclidean norm. (2.45) shows that the minimum is found when

the first norm = 0, therefore x can be computed from R1x = c via back-substitution.

||d||22 is then the least-squares residual; it is error that cannot be reduced through

choice of x. When computing least-squares using the LAPACK routine ZGELSS

(Anderson et al., 1990) or equivalently in Matlab using the “backslash” operator

(MathWorks, 2007), this is the approach taken. The orthogonal matrix Q is com-

puted using Householder reflections (e.g. Golub and van Loan, 1996, §5.1.2) to cre-

ate columns of zeros below the diagonal in A, a numerically stable process. Once

A is made upper triangular, the product of all the individual Householder trans-

formation matrices is Q. An added benefit of the QR decomposition approach is

its robustness with respect to degenerate columns in A; G−g fails to exist for this

degeneracy, discussed in section E.3.
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2.7 Solution for head or flux

Utilizing the structure of A used in the direct matrix solution section (2.6.2), a

modified A matrix can be created, where the rows correspond to the desired eval-

uation points, rather than the collocation points along the boundaries of the active

elements. Using x determined in section 2.6, the head or flux is found through

a matrix-vector multiplication. As an example, to compute the head and Carte-

FIGURE 2.8. Geometry of head and flux calculation at c (marked by x)

sian fluxes at a point c in the background (see x in Figure 2.8), we construct the

following system to determine the effects of the active elements, Φ̄1+(r1c,θ1c)
K0

0 Φ̄2+(r2c,θ2c)
K0

0 0 0

nx · q̄1+(r1c, θ1c) 0 −nx · q̄1+(r2c, θ2c) 0 0 0
ny · q̄1+(r1c, θ1c) 0 −ny · q̄1+(r2c, θ2c) 0 0 0

x =

 h̄cqxc
qyc

 (2.46)

where the final solution is found by adding on the contribution due to the pas-

sive elements. The solution is computed by evaluating the effects of the active

elements that can “see” the current calculation point, those elements that do not

directly contribute to the solution at the current calculation point have zeros in

their columns of (2.46). For circular element 1+ in (2.46) the calculation point is at

the local coordinate (r1c, θ1c), the location of the calculation point in the local coor-

dinates of the element. For the Cartesian fluxes, much of the calculation is shared

between the second and third rows, one is projected onto the x-axis, the other onto

the y-axis. Obviously, the fluxes could be computed with respect to any desired
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coordinate system, but rectangular vector components are typically required by

plotting software.

Lastly, the solution is a computed at a vector of values of the Laplace param-

eter and the time-domain solution is estimated using a numerical inverse Laplace

transform algorithm. Several algorithms are discussed in Chapter 5.
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Chapter 3

DERIVATION OF ELEMENTS

We cover the derivation of LT-AEM elements for different geometries. Circular,

elliptical, and Cartesian 2D coordinates are investigated with general and special

case elements derived. 3D elements are explored, to give a feel for the direction

this work might proceed.

3.1 Circular elements

In the earliest AEM applications (e.g. Strack and Haitjema, 1981b; Strack, 1989)

circles were approximated using polygons of line doublets. Truly circular steady

AEM elements were developed by Salisbury (1992) for one or a small number of

circles using a complex power series approach, where the trigonometric series are

represented in the form of (D.3). Janković (1997) and Barnes and Janković (1999) il-

lustrated the eigenfunction expansion approach, also for the steady-state problem,

but showed how it easily extended to numerous circular elements.

Transient circular LT-AEM elements were given by Furman and Neuman (2003)

in their LT-AEM proof-of-concept; they are re-derived and extended here in a gen-

eral framework, illustrating some of the points made for elliptical coordinates in

the more familiar polar coordinates, and showing the connection between aquifer

test solutions and LT-AEM elements. The solution for a well with a finite radius,

with and without wellbore storage is given as a simplified form of an external cir-

cular element.

Radial coordinates are defined as x = r cos θ, y = r sin θ with the inverse defini-

tions r =
√
x2 + y2 and θ = arctan y/x. The metric coefficients for standard polar
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coordinates are

hr = 1, hθ = r. (3.1)

The modified Helmholtz equation (2.3), expressed in circular cylindrical coordi-

nates (Özişik, 1993, §3), is

∂2Φ̄

∂r2
+

1

r

∂Φ̄

∂r
+

1

r2

∂2Φ̄

∂θ2
− κ2Φ̄ = 0, (3.2)

with the condition that Φ̄ is 2π-periodic in θ. By substituting the form Φ̄(r, θ) =

B(r)Θ(θ), this PDE can be separated to the simple harmonic oscillator and modi-

fied Bessel ODEs,

d2Θ

dθ2
+ Θn2 = 0, (3.3)

r
d

dr

(
1

r

dB

dr

)
−
(
κ2 +

n2

r2

)
B = 0, (3.4)

where n is a separation constant. A general solution to (3.3)

Θn(θ) = A cos(nθ) + C sin(nθ), (3.5)

where sin and cos are the eigenfunctions for this problem. The corresponding gen-

eral solution for (3.4) is

Bn(r) = D In(rκ) + EKn(rκ), (3.6)

where In and Kn are the first- and second-kind modified Bessel functions (e.g.

McLachlan, 1955, §6) and A, C, D, and E are constants. The modified Bessel func-

tions are simply general solutions to (3.4) (not eigenfunctions), taking on a passive

role in the calculation. The Bessel functions take on the order (n) dictated by the

solution to the periodicity condition associated with (3.3) and their argument is

controlled by κ, which includes material properties and the Laplace parameter.

The simple harmonic oscillator (3.3) and its solutions (3.5) have no singularities

for finite θ. The modified Bessel equation (3.4) has singularities at r = 0 and∞, as

do its solutions (3.6) (McLachlan, 1955, p. 185).
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Enforcing periodicity in θ restricts the separation constant to integer eigenval-

ues. Recombining the ODE solutions (3.5 and 3.6) and summing over the spectrum

of eigenvalues gives general solutions to (3.2) for internal and external elements as

Φ̄+
c (r ≥ r0, θ) =

∞∑
n=0

Kn(rκ) (an cosnθ + bn sinnθ) , (3.7)

Φ̄−c (r ≤ r0, θ) =
∞∑
n=0

In(rκ) (cn cosnθ + dn sinnθ) , (3.8)

where an, bn, cn, and dn are coefficients to be determined and the radial solutions

in (3.7) and (3.8) are chosen based on the fact the solution must remain finite. Nor-

malizing the radial basis functions by their value on the boundary, and truncating
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the infinite sum at N terms gives the implemented form of the circular elements as

Φ̄+
c (r ≥ r0, θ) ∼=

N−1∑
n=0

Kn(rκ)

Kn(r0κ)
(an cosnθ + bn sinnθ) , (3.9)

Φ̄−c (r ≤ r0, θ) ∼=
N−1∑
n=0

In(rκ)

In(r0κ)
(cn cosnθ + dn sinnθ) . (3.10)

In the LT-AEM formulation used by Furman and Neuman (2004) (which used

a fixed-point iteration), the solution inside could be expressed in terms of the so-

lution outside. The simplification is unique to polar coordinates, where the same

angular eigenfunctions are used for both interior and exterior elements.
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FIGURE 3.2. Contours of head for circular domain with specified head, no-flow,
K > Kbg, and K < Kbg at three different times. Injection well comes on between b
and c

Figure 3.2 is an example of a finite domain using five circular elements and a

point source. The outer and upper-left circles are type I BC (h = 2), the lower-

right circle is a type II BC (no-flow), the lower-left circle is a matching boundary

for a region of higher K, and the upper-right circle is a matching boundary for a

region of lower K. The initial condition is h = 1 everywhere. Panel (a) shows the

system at early time, where there are steep gradients around the specified head

elements (contour interval = 0.1). Panel (b) shows the system at a later time, when

the gradient is flatter across the high-K element, steeper across the low-K element,
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and contours are perpendicular to the boundary of the no-flow element. A well

begins injecting at t = 3 × 10−4, taking the head in the middle of the domain in

panel (c) to levels above those of the specified head boundary conditions.

3.1.1 Well as a circle of small radius (no storage)

A useful simplification of the general circular solutions (3.9) and (3.10) is a circle

of small radius. The radius of a well, rw, is assumed to be small enough that the

variation in head across it is negligible. This simplification leads to the finite-radius

well source. We begin with the well screen boundary condition of

ḡ(p)Q =

∫ 2π

0

[
r
∂Φ̄+

∂r

]
rw

dθ; (3.11)

where a general pumping rate is represented by convolution of a general time

behavior g(t) and a constant Q, which is ḡ(p)Q in Laplace space. Substituting (3.7)

into (3.11), we get

ḡ(p)Q

rw
=
∞∑
n=0

[
∂

∂r
Kn(rκ)

]
rw

∫ 2π

0

(an cosnθ + bn sinnθ) dθ, (3.12)

but due to symmetry only the eigenvalue n = 0 survives the integration. Using

a recurrence relationship for the derivative of a Bessel function (McLachlan, 1955,

p.204), the expression for a0 is

a0 =
ḡ(p)Q

2πrw

1

K1(rwκ)
; (3.13)

this makes the final expression for the finite-radius well source

Φ̄well(r) = ḡ(p)
Q

2πκrw

K0(rκ)

K1(rwκ)
. (3.14)

This solution (for constant Q) was developed by van Everdingen and Hurst (1949)

and first given in the hydrology literature by Hantush (1964b). As rw → 0 it

asymptotically simplifies to the Theis (1935) point source solution (2.22) (Lee, 1999,
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§4.3.2). Although Theis’ point source of infinitesimal radius is commonly used, the

finite radius well source is more appropriate when observations are made very

close to the pumping well, see Figure 3.3. Capitalizing on the axial symmetry, the

plot is in terms of dimensionless time and drawdown

tD =
tK

Ssr2
, sD =

4π(Φ− Φ0)

Q
. (3.15)

Additionally, this more physically realistic solution will be adapted to account for

wellbore storage and skin effects in the next section, for which the Theis solution

cannot be modified to accommodate.

For ḡ(p) = 1/p, the solution for the circle of small radius (3.14) is both an LT-

AEM element and an analytic solution found in the literature. Passive LT-AEM

elements are the simplest type of LT-AEM element, because they usually only have

one free parameter (Q in this case). The active element version of (3.14) is found by

solving for Q̄ = ḡ(p)Q, where the boundary condition is specified in terms of total

head, Φ̄total = Φ̄well + Φ̄bg,

Q̄ = 2πκrw
(
h̄BCK − Φ̄bg

) K1(rwκ)

K0(rwκ)
. (3.16)

Here h̄BC is the head specified at the well and Φ̄bg is the net effect of background

elements at the wellscreen (if this is zero, the solution simplifies to an analytic

solution for a constant head well). Once Q̄ in (3.16) is found, it is substituted into

(3.14). Convolution allows arbitrary pumping rates to be assigned to the point

source; in this case it is computed in a way to make the head at the well constant

in the presence of other elements. This is an example of a well-known analytic

solution adapted to be an active LT-AEM element.

If rw becomes very large (e.g., hand-dug wells or infiltration galleries), both

wellbore storage (addressed in the next section) and the variation of the head

around the circumference of the well (due to background effects) must be ac-

counted for. The simplification leading to (3.14) cannot be justified, which results
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in an expression involving an infinite sum over all the eigenvalues to properly ex-

pand the boundary condition at the well. For all the well solutions derived here,

we assume minimal change in background effects across the diameter of the well.

 1
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FIGURE 3.3. Finite-radius well solution for a range of rD = r/rw values; sD and tD
are defined in (3.15)

In summary, the most general LT-AEM well solution is (3.9) (i.e, a circle with

variable boundary conditions around its circumference); (3.14) is the next most

general solution, involving the simplifying assumption that the effects of the well

are constant across the well’s diameter. Finally, the Laplace space form of the

Theis solution (2.22) additionally assumes the wellbore radius itself is insignifi-

cant. When r ≥ 5rw (see Figure 3.3) this is a reasonable approximation to the

general solution. In most applications, rw ≤ 30 cm, therefore the effects of the well

radius on the solution are only significant within at most 1.5 m of the well. The

finite-radius well solution (in both steady and transient AEM) is often used solely

because it avoids the singularity at the well (a problem when computing results

onto a grid for contouring), which can occur when the Theis solution is used.
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3.1.2 Wellbore storage

For large-diameter pumping wells, especially when aquifer storage is small and

observations are made near the pumping well at early time, the effects of wellbore

storage can be very significant. Beginning with the finite-radius well solution just

derived, these effects can be accounted for, in a manner similar to Papadopulos

and Cooper (1967) (who adapted it from the equivalent heat conduction solution

of Carslaw and Jaeger (1959, §13.5)), but allowing for matching of elements. The

boundary condition is derived from the mass balance for the wellbore (see Fig-

ure 3.4), of the form Qin −Qout = ∆Vstorage/∆t ,

QA −Q = Cw
dsw
dt

, (3.17)

where QA is the volume flowrate [L3/T] into the well from the aquifer, Q is the

volume flowrate leaving the well through the pump, sw is the drawdown [L] in

the wellbore, and Cw = dVw/dsw is the coefficient of storage [L2] for the wellbore

(relating drawdown to change in volume). In open boreholes, Cw = πr2
c , where

FIGURE 3.4. Large diameter well; adapted from Papadopulos and Cooper (1967)

rc is the casing radius over the interval where the drawdown of the water table is
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taking place. For a pressurized borehole, Cw may need to account for fluid com-

pressibility. QA is the total inflow from the aquifer; for an active LT-AEM element

this can include the effects of other elements. A general expression for total well

inflow is

QA =

∫ 2π

0

[
r
∂Φtot

∂r

]
rw

dθ. (3.18)

Assuming that rw is small enough to ignore the variation in the effects of other

elements across the well diameter (Φ̄tot(rw) is constant with respect to θ), (3.17) and

(3.18) become

2πrw

[
∂Φtot

∂r

]
rw

−Q =
πr2

c

K

[
∂Φtot

∂t

]
rw

, (3.19)

after converting drawdown in the wellbore to Φtot at the well screen. Taking the

Laplace transform of (3.19) leads to an inhomogeneous type III boundary condition

(2.24) at the well screen,

2

[
∂Φ̄tot

∂r

]
rw

− pr2
c

Krw
Φ̄tot(rw) =

ḡ(p)Q

πrw
. (3.20)

Here Φ̄tot = Φ̄well +
∑

Φ̄bg, where Φ̄well is (3.14), with ḡ(p) = 1 and Q = awell to

give an impulse response, with the strength left to be determined. By considering

the effects of other elements, a passive well element (3.14) becomes an active one,

which must have its coefficient determined at run-time. The solution then becomes

Φ̄well(r) =
awell

2πκrw

K0(rκ)

K1(rwκ)
; (3.21)

this solution only has one degree of freedom; there is only one eigenvalue. A more

general solution could be derived, accounting for the changes in the effects of other

elements across the circumference of the well, leading to a general circular element

with type III BC of (3.20), but keeping the infinite series of eigenvalues like (3.9).

For a single well (no background elements), the wellbore storage solution has a

unit slope on a log-log plot (see Figure 3.5; this figure does not follow the conven-

tion of Papadopulos and Cooper (1967), who re-define tD in terms of rw), which
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is characteristic of drawing water from a finite reservoir (in this case the well-

bore). The finite-radius well solution without wellbore storage (3.14) has more

drawdown than the point Theis solution (for the same radius from the center of

the well), then accounting for the storage of water in the well decreases the ob-

served drawdown. The curves represent different aquifer storage coefficients; if

there is more storage available in the aquifer, less must come from the wellbore

and therefore the deviation from the Theis solution is smaller. The wellbore stor-

age solution is more useful for aquifer test interpretation than (3.14), because the

curves in Figure 3.5 are what would actually be observed in a large-radius pump-

ing well.

Following van Everdingen (1953) (Moench (1984, 1997) in the hydrology liter-

ature), an additional skin factor could be added to the formulation of QA (3.18) to

account for the different permeability associated with a thin under-developed or

gravel-packed zone surrounding the wellscreen. This could also be handled using
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a small circular LT-AEM element circumscribing the well, to represent the near-

well zone more explicitly. This is analogous to the approach taken by Fitts (1991)

for steady-state flow to a well in 3D.

3.2 Elliptical elements

Obdam and Veling (1987) and Strack (1989, p. 487) developed steady elliptical ele-

ments by conformally mapping the ellipse onto the circle, which had already been

solved. Suribhatla et al. (2004) first used the eigenfunction expansion approach to

handle many steady elliptical elements.

Transient elliptical elements are derived here using a procedure analogous to

that for circles in section 3.1. Bakker (2004a) also derived elliptical AEM elements

for the modified Helmholtz equation, in the context of steady flow in a multi-

aquifer system. Bakker and Nieber (2004b) and here in Appendix F, elliptical solu-

tions are also derived for the steady linearized unsaturated flow problem. In these

applications there is no time dependence, therefore the solutions do not include

the parameter p, which becomes large at small time.

FIGURE 3.6. Components of elliptical coordinates (η, ψ); f , a, and b are semi-focal,
-major, and -minor lengths, respectively.
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Elliptical coordinates (see Figure 3.6) are defined by

x+ iy = f cosh(η + iψ), (3.22)

where (η, ψ) are dimensionless elliptical coordinates, and f is the semi-focal length

[L]. Equating real and imaginary parts of (3.22) leads to

x = f cosh η cosψ, y = f sinh η sinψ. (3.23)

These can be used to compute the metric coefficients [L] (see Appendix B),

hη = hψ = f
√

1/2[cosh 2η − cos 2ψ] = f

√
cosh2 η − cos2 ψ, (3.24)

where the back-transform is η + iψ = arccosh [(x+ iy)/f ], but the multi-valued

complex hyperbolic arc cosine is expressed in terms of a single-valued functions in

the form

η + iψ =


ln

(
x+iy
f

+

√(
x+iy
f

)2

− 1

)
x > 0

ln

(
x+iy
f
−
√(

x+iy
f

)2

− 1

)
x ≤ 0

; (3.25)

this convention confines the branch cut to the line between the foci and returns the

value corresponding to η > 0 when y = 0.

The modified Helmholtz equation (2.3) in 2D elliptical coordinates (Moon and

Spencer, 1961b, p.17) is

2

f 2 [cosh 2η − cos 2ψ]

[
∂2Φ̄

∂η2
+
∂2Φ̄

∂ψ2

]
− κ2Φ̄ = 0, (3.26)

with the condition that Φ̄ is 2π-periodic in ψ. Substituting the form Φ̄(η, ψ) =

H(η)Ψ(ψ), (3.26) can be separated into the ODEs

d2Ψ

dψ2
+ (ω − 2q cos 2ψ) Ψ = 0, (3.27)

d2H

dη2
− (ω − 2q cosh 2η)H = 0, (3.28)
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where ω is a separation constant and q = −f 2κ2/4 is the Mathieu parameter. These

ODEs are the angular (3.27) and radial (3.28) Mathieu equations. The parameter

q is specified through the aquifer properties, element geometry, and p, while the

eigenvalues (ω) are determined to make the angular solution periodic (see Ap-

pendix E). The solutions to (3.27) and (3.28) are angular and radial Mathieu func-

tions.

3.2.1 Elliptical special functions

Angular Mathieu functions The angular Mathieu equation (3.27) has a general peri-

odic solution, including both even and odd forms,

Ψn(ψ) = A cen(ψ,−q) +B sen(ψ,−q), (3.29)

where A and B are constants and cen and sen are the even (cosine-elliptic) and odd

(sine-elliptic) angular Mathieu functions (MF) of order n, argument ψ, and param-

eter −q. The eigenvalues (ω in (3.27) and (3.28)) are different between the even

and odd solutions and even and odd orders; this results in four types of angular

solutions, described in Table 3.1. Figure 3.7 shows even angular functions for real

function eigenvalues major-axis minor-axis period
ce2n(ψ,−q) a2n symmetric symmetric π

ce2n+1(ψ,−q) b2n+1 symmetric anti-symmetric 2π
se2n+1(ψ,−q) a2n+1 anti-symmetric symmetric 2π
se2n+2(ψ,−q) b2n+2 anti-symmetric anti-symmetric π

TABLE 3.1. Angular Mathieu function types (q < 0)

q. For finite ψ and q, (3.27) has no singularities and neither do the angular MF.

When q = 0 (foreground in Figure 3.7), the functions reduce to their trigonomet-

ric counterparts. The zero-order even angular function, ce0(ψ; 0), equals 1/
√

2 by

convention; when q 6= 0 it is oscillatory, but it has no zeros. As |q| increases, the

functions become more oscillatory, but with the same number of zeros (McLachlan,
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FIGURE 3.7. First three orders of cen(ψ,−q) as functions of both ψ and −q

1947, §12); the zeros tend to cluster around±π/2 as |q| → ∞ (as elliptic coordinates

approach Cartesian coordinates). Figure 3.8 illustrates the analogous behavior of

the odd angular functions, as functions of argument and parameter.

Because Ψn(ψ) = Ψn(ψ+ 2π), (3.29) does not include the valid but non-periodic

second-kind angular MF; these rarely-used functions are known as fen(ψ, q) and

gen(ψ, q) (McLachlan, 1947, §7).

Radial Mathieu functions The radial Mathieu equation (3.28) has a general solution

(corresponding to the periodic solution given in (3.29)) of the form

Hn(η) = C Ken(η,−q) +DKon(η,−q) + E Ien(η,−q) + F Ion(η,−q). (3.30)
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where C, D, E, and F are constants, Ien and Ion are even (e) and odd (o) radial MF

of the first kind, and Ken and Kon are the even and odd radial MF of the second

kind. All the radial functions in (3.30) are of order n, argument η, and parameter

−q.

The radial ODE (3.28) has a singularity at η → ∞, as does the modified Bessel

equation (3.4). But unlike the radial ODE, (3.28) has no singularity at the origin.

The first-kind solutions to both the modified Bessel and radial modified Mathieu

equations increase exponentially as r and η → ∞ (see Figures 3.1 and 3.9). In

contrast, when making the transition from circular to elliptical coordinates, the

singularity at the origin (r = 0) is “spread out” over the line segment η = 0; the

second-kind Mathieu functions become large, but not infinite at the origin, for q 6=

0 (see Figure 3.10). Second-kind Bessel functions are singular at r = 0 for all integer

orders. To aid qualitative comparison with Bessel functions, the radial Mathieu

functions are plotted in Figures 3.9 and 3.10, using the physically-based coordinate

sinh(η) (Gutiérrez Vega et al., 2003); as |q| increases the first kind solution grows

even faster at large distance, while the second kind solution rises slower at the

origin, and goes faster to zero as η becomes large.
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3.2.2 Elliptical PDE solution

When recombining the ODE solutions (3.29 and 3.30) the even/odd cross-products

are discarded (since they correspond to different eigenvalues that may only be

combined through summation, see Table 3.1), leading to the general solutions of

(3.26) for <(q) < 0

Φ̄+
e (η, ψ) =

∞∑
n=0

an Ken(η,−q) cen(ψ,−q) +
∞∑
n=1

bn Kon(η,−q) sen(ψ,−q), (3.31)

Φ̄−e (η, ψ) =
∞∑
n=0

cn Ien(η,−q) cen(ψ,−q) +
∞∑
n=1

dn Ion(η,−q) sen(ψ,−q), (3.32)

where an, bn, cn, and dn are the coefficients to be determined. Equation 3.31 con-

tains only Ken and Kon, which are finite as η → ∞. Similarly, (3.32) only contains

Ien and Ion, which have a continuous value and first derivative across η = 0 (the

focal line). Because <(q) < 0 these solutions are referred to as modified Mathieu

functions, of positive q (analogous to how In(r) and Kn(r) can be considered mod-
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ified Bessel functions of real argument or related to non-modified Bessel functions

of complex argument (e.g. McLachlan, 1955, §6).

To simplify the expression for head matching on the boundary of the ellipse,

the radial MF are normalized and the infinite sum is truncated, resulting in

Φ̄+
e (η ≥ η0, ψ) ∼=

N−1∑
n=0

an
Ken(η,−q+)

Ken(η0,−q+)
cen(ψ,−q+)

+
N−1∑
n=1

bn
Kon(η,−q+)

Kon(η0,−q+)
sen(ψ,−q+), (3.33)

Φ̄−e (η ≤ η0, ψ) ∼=
N−1∑
n=0

cn
Ien(η,−q−)

Ien(η0,−q−)
cen(ψ,−q−)

+
N−1∑
n=1

dn
Ion(η,−q−)

Ion(η0,−q−)
sen(ψ,−q−), (3.34)

where± superscripts on q indicate whether the coefficient involves aquifer param-

eters from inside (−) or outside (+) the ellipse η = η0.

The obvious difference between the circular element (3.9) and the elliptical ele-
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ment (3.33) is the “even” and “odd” radial functions in elliptical coordinates; radial

MF are neither even nor odd, they only share eigenvalues with the even or odd an-

gular MF. A second difference is the appearance of both an argument (η or ψ) and

a parameter, q±, in (3.33) and (3.34). Lastly, both radial and angular MF depend on

the coefficients of the PDE (through q = −[fSs/(2K)]2), while sine and cosine in

(3.9) do not, allowing the simplification made by Furman and Neuman (2004) in

polar coordinates, but not in elliptical coordinates.

Two contour plots of head illustrating transient effects of a point source and

an ellipse of different material properties are shown in Figures 3.11 and 3.12. In

Figure 3.11 the head contours are nearly perpendicular to the boundary of the el-

lipse, although there is a very small component of flow into the ellipse. At t = 0,

head is zero everywhere; the point source causes mounding in the background

surrounding the low-permeability ellipse, but the head remains close to zero in-

side the ellipse (the steep contours indicate a large gradient, but Ke = Kbg/1000,

therefore the flux leaving the ellipse is still very small). In the highK ellipse shown

in Figure 3.12, the gradient across the ellipse is very flat, due to its high permeabil-

ity.
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FIGURE 3.11. Head due to a point source near a low permeability ellipse (Ke =
Kbg/1000)
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FIGURE 3.12. Head contours due to a point source near a high permeability ellipse
(Ke = 1000Kbg)

3.2.3 Specified flux line source

An expression for a line source with a specified spatial distribution of strength

(along y = 0, from −f ≤ x ≤ f ) is obtained from (3.31), using only ce2n(ψ, q) due

to symmetry (see Table 3.1). Normalizing by the radial MF derivative evaluated at

η = 0, Ke′2n(0,−q), to simplify flux matching, gives

Φ̄line(η, ψ) =
∞∑
n=0

β2n ce2n(ψ,−q) Ke2n(η,−q)
Ke′2n(0,−q)

, (3.35)

where β2n are the coefficients to determine. The BC for a specified flux line element

in elliptical coordinates is

q̄BC(ψ) = ḡ(p)
λ

2f
= − 1

hη

∂Φ̄line

∂η

∣∣∣∣
η=η0

, (3.36)

where λ is the constant flowrate [L2/T] for the entire line segment, 2f is the length

of the line segment, and q̄BC(ψ) is the normal flux [L] due to the line source. The

metric coefficient (see Appendix B) is required to preserve the correct dimensions.
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Differentiating (3.35) with respect to η, evaluating it at η = 0, and using orthogo-

nality over 0 < ψ < π gives

− ḡ(p)
λ

2

∫ π

0

sinψ ce∗2m(ψ,−q) dψ =
∞∑
n=0

β2n

∫ π

0

ce2n(ψ,−q) ce∗2m(ψ,−q) dψ, (3.37)

where ce2m(ψ,−q) has period π (see Table 3.1). Due to the orthogonality of the

angular MF (∗ is complex conjugate), the integral on the right in (3.37) is 0 for

m 6= n and is defined as π/2 for m = n (McLachlan, 1947, §2.19), reducing the

infinite sum to its (2m)th term. The expression for the coefficients is

β2m = −ḡ(p)
λ

π

∫ π

0

ce∗2m(ψ,−q) sinψ dψ. (3.38)

Expanding ce∗2m in terms of its defining infinite cosine series (E.8), and evaluating

the resulting integral leaves

β2m = ḡ(p)
2λ

π
(−1)m+1

∞∑
r=0

(−1)r
A

(2m)
2r

∗

1− (2r)2
, (3.39)

where A
(2m)
2r are matrices of Mathieu coefficients; their columns are eigenvectors

to the angular Mathieu ODE (see Appendix E). The terms in the infinite sum

quickly become small as r increases and the largest magnitude terms in A
(2m)
2r oc-

cur surrounding the diagonal r ≈ m (as q → 0, A
(2m)
2r becomes a diagonal matrix).

Substituting (3.39) back into (3.35) gives the final expression for a constant spatial

strength passive line source as

Φ̄line(η, ψ) = ḡ(p)
2λ

π

∞∑
n=0

(−1)n+1

[
∞∑
r=0

(−1)r
A

(2n)
2r

∗

1− (2r)2

]
ce2n(ψ,−q) Ke2n(η,−q)

Ke′2n(0,−q)
.

(3.40)

This formulation of the transient line source is valid for any length line source

and can take on different time behaviors through convolution with specific ḡ(p).

The head distribution due to the constant total flowrate line element expressed in

elliptical coordinates is illustrated in Figure 3.13. The line source, expressed as
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FIGURE 3.13. Head due to specified total flux line source as the ellipse η0 = 0

an ellipse of zero radius, is most useful as an active LT-AEM element, where the

strength is allowed to vary along the length of the line segment (not simply the

constant strength assumed in (3.36)). Analogous to the different point sources dis-

cussed in sections 3.1, 3.1.1, and 3.1.2, the elliptical line segment can be assumed to

have uniform strength (allowing the coefficients to be computed analytically, as in

(3.40)), or can be left more general (3.33). In the more general case, the coefficients

of (3.31) are computed at run time (an active element), adjusting to account for the

effects of other elements.

3.2.4 Uniform head ellipse

Following a procedure analogous to that above for a flux boundary condition, a

passive specified head boundary condition for an elliptical lake or constant head

line source is derived. Similarly beginning from (3.31), using only the even-order

even functions, but instead normalizing by Ke2n(η0,−q), gives

Φ̄lake(η ≥ η0, ψ) =
∞∑
n=0

a2nce2n(ψ,−q) Ke2n(η,−q)
Ke2n(η0,−q)

. (3.41)

Specifying a constant head at the boundary of the ellipse leaves

Φ̄lake(η ≥ η0, ψ) = hBCKḡ(p) =
∞∑
n=0

a2nce2n(ψ,−q), (3.42)
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which can be evaluated for the unknown coefficients using orthogonality of the

angular MF. Multiplying by ce∗2m(ψ,−q) and integrating over −π ≤ ψ ≤ π, leaves

a2m =
hBCKḡ(p)

π

∫ π

−π
ce∗2m(ψ,−q) dψ. (3.43)

The integral can be evaluated by substituting the definition of ce∗2m(ψ,−q) in terms

of its defining cosine series (E.8). This gives

a2m =
hBCKḡ(p)

π

∫ π

−π
(−1)m

∞∑
r=0

(−1)r
[
A

(2m)
2r

]∗
cos(2rψ) dψ, (3.44)

which evaluates to just the r = 0 term, leaving only

a2m = 2hBCKḡ(p)(−1)m
[
A

(2m)
0

]∗
. (3.45)

Putting (3.45) back into (3.41) gives a passive specified constant head elliptical ele-

ment (e.g., a lake) as

Φ̄lake(η ≥ η0, ψ) = 2hBCKḡ(p)
∞∑
n=0

(−1)m
[
A

(2m)
0

]∗
ce2n(ψ,−q) Ke2n(η,−q)

Ke2n(η0,−q)
. (3.46)

A real-variable version of (3.46) was derived by Tranter (1951) for a heat conduc-

tion problem. Kucûk and Brigham (1979) applied this solution to flow to a circular

well in an anisotropic petroleum reservoir; the circle being distorted into an ellipse

by the transformation that rendered the aquifer properties isotropic.

Figure 3.14 shows an example of a line of constant head, simulated using an

ellipse with η0 = 0. If more than one specified head element is used, (3.46) will not

maintain a constant total head; active elements must be used in this case.

3.2.5 Elliptical source in unsaturated media

Appendix F gives the solution for flow from an ellipse due to the boundary con-

dition hBC = e−a sinψ or hBC = e−b cosψ; the BC takes this exponential form from

the transformations used to linearize Richards’ equation. Appendix F is a self-

contained manuscript, and therefore has some repetition of definitions and uses
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FIGURE 3.14. Head due to constant head line source as the ellipse η0 = 0

slightly different conventions in places, because the work is an extension of a cir-

cular solution by Philip (1984).

3.3 Cartesian elements

Fitts (1989) modeled steady flow in aquifers using simple potential functions to

represent jumps across planes, following an approach detailed by Kellogg (1954,

§7). This approach is similar to the method of images (e.g. Lee and Henyey, 1974),

which is elegant for some simple geometries, but is not explored fully here.

While 2D Cartesian (i.e., rectangular) coordinates are the most familiar, due to

their infinite boundaries the system poses additional complications when used to

derive LT-AEM elements by EE. The governing equation (2.3) takes the form

∂2Φ̄

∂x2
+
∂2Φ̄

∂x2
− κ2Φ̄ = 0, (3.47)

with the condition that the solution vanishes at x = ±∞ and y = ±∞, but no

periodicity condition. When separated using Φ̄(x, y) = X(x)Y (y), (3.47) leads to

the two ODEs

d2X

dx2
+ n2X = 0, (3.48)

d2Y

dy2
− (n2 − κ2)Y = 0, (3.49)
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where n is a separation constant. In this case, (3.48) is the simple harmonic oscil-

lator and (3.49) is the exponential equation. The general solutions to these ODEs

are

X(x) = A cosnx+B sinnx, (3.50)

Y (y) = C e
√
n2−κ2y +D e−

√
n2−κ2y, (3.51)

where A, B, C, and D are constants. The trigonometric functions in (3.50) are the

eigenfunctions, which along with the boundary conditions determine the eigenval-

ues. For Cartesian coordinates, the ODEs and their solutions have no singularities

in the finite plane. The exponential solutions in (3.51) take the passive role in the

calculation. Due to the symmetry of Cartesian coordinates, the roles of X and Y

can be trivially switched; the choice is made based on the orientation of the match-

ing boundary. If the boundary is parallel to the x-axis, then X should have the

eigenfunctions (the simple harmonic oscillator), so that arbitrary boundary condi-

tions can be expanded.

For Cartesian coordinates the eigenvalue spectrum is continuous because the

boundary is infinite in length (−∞ < x < ∞). The spectrum of eigenvalues be-

haves quite differently, compared to the standard Sturm Liouville problem (e.g.,

circular or elliptical boundaries), described in section 2.3.2. Unless the integral

(and its back-transformation) can be found using the method of residues or other

complex integration techniques, the integral must be approximated asymptotically

or as a sum over a large interval.

The approach taken here is to truncate the range to be large but finite, thus re-

taining the integer eigenvalues and the simplicity that accompanies them. The

range is limited to −W/2 ≤ x ≤ W/2, with the condition that Φ̄(−W/2, y) =

Φ̄(W/2, y) when the boundary is a matching boundary. This assumes that the net

effects of other elements is symmetric and centered on the line segment at x = 0.

This severe limitation is due to the approximate nature of the approach taken here.
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A more correct and general approach would involve the entire infinite boundary

or, for a simple arrangement of a few elements, the method of images.

Normalizing the interval to 2π and forcing the eigenfunctions to be periodic

gives the following eigenvalues and eigenfunctions in x and corresponding pas-

sive exponential solutions in y

Xn(x) = An cos

(
2nπx

W

)
+Bn sin

(
2nπx

W

)
, (3.52)

Yn(y) = Cn exp

±y
√(

2nπ

W

)2

− κ2

 , (3.53)

where n = 1, 2, 3, . . . . Since each eigenfunction satisfies the ODE and the bound-

ary conditions at x = ±W/2, any sum of them will also. The coefficients are deter-

mined by matching boundary conditions along the boundary parallel to the x-axis.

For Cartesian elements local coordinates are defined so that y ≥ 0, therefore

only the negative exponential is used for all n. This forces the exponentials to

automatically satisfy the condition that the effects of the line element die off at

large distance (y) from the line.

Recombining the solutions gives the expression for a truncated Cartesian ele-

ment as

Φ̄(|x| � W, y ≥ 0) =
∞∑
n=0

e−y
√

( 2nπ
W )

2
−κ2

×
[
an cos

(
2nπx

W

)
+ bn sin

(
2nπx

W

)]
. (3.54)

One drawback to these singular Cartesian elements is the requirement that the

solution be equal at x = ±W/2.

3.4 Three-dimensional elements

While we do not develop or implement all the details of 3D LT-AEM elements here,

some related generalities are discussed. First, to use the EE approach, Helmholtz-
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separable 3D coordinates must be identified; the following references list the co-

ordinates with information regarding their solution: Morse and Feshbach (1953,

p.655–666), Moon and Spencer (1961b, p.1–48), Ben-Menahem and Singh (2000,

p.53), and Arscott and Darai (1981). Geometrically, the 11 3D coordinates in Ta-

ble 3.2 can be grouped into three categories: cylindrical, rotational and general.

Cylindrical coordinates are essentially the 2D coordinates already considered, but

extruded in the third dimension. Rotational coordinates come from rotating 2D

coordinates about an axis of symmetry. General coordinates cannot be derived

from 2D coordinates. Circular cylinder coordinates can be considered either cylin-

drical (extrude polar coordinates perpendicular to xy-plane) or rotational (rotate

Cartesian coordinates about x or y axis).

coordinate finite singular infinite modified Helmholtz
system boundary element boundary special functions

Cylindrical
Cartesian none plane plane exponential
circular none ∞ line circ. tube mod. Bessel
elliptical none ∞ strip ellip. tube mod. Mathieu
parabolic none half-plane parabola Weber

Rotational

spherical sphere point cone sph. Bessel,
associated Legendre

prolate spheroid line segment hyperboloid spheroidal wavespheroidal
oblate spheroid circ. disc hyperboloid spheroidal wavespheroidal

parabolic none parabolic disc paraboloid Tricomi
General

conical sphere point ellip. cone sph. Bessel, Lamé
ellipsoidal ellipsoid ellip. disc hyperboloids ellipsoidal wave

paraboloidal none plane paraboloids Whittaker-Hill

TABLE 3.2. Helmholtz-separable 3D coordinate systems (sph. = spherical, mod. =
modified, circ. = circular, ellip. = elliptical)

Cylindrical systems appear in both Table 3.2 and Table 2.1, but they behave
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differently. In 2D both polar and elliptical coordinates have finite boundaries (the

circumferences of the circle or ellipse); these finite 2D curves become infinite 3D

surfaces when extruded parallel to the z-axis (perpendicular to the other two di-

mensions). All the entries in the cylindrical section can also have a plane as an∞

boundary, but this is only listed under the Cartesian coordinate.

For 3D, the rotational coordinate systems take the role that the cylindrical ones

had in 2D; the point, line and circular disc are represented simply as the degen-

erate spherical, prolate spheroidal (cigar shaped), and oblate spheroidal (discus

shaped) coordinate systems, respectively. The main obstacle to overcome for the

non-spherical rotational systems is the evaluation of the special functions that arise

when separating the modified Helmholtz equation in these systems. Spheroidal

wave functions require analogous solution techniques to Mathieu functions. First,

an eigenvalue problem is solved to compute valid parameter values, then the func-

tions are evaluated using definitions in terms of infinite series of Associated Leg-

endre and spherical Bessel functions (e.g. Thompson, 1999; Aquino et al., 2002; Li

et al., 2002).

The ellipsoidal coordinate system is regarded as the most general 3D system;

any of the other 3D systems can be obtained from it by stretching, compressing or

translating coordinates (Arscott and Darai, 1981), analogous to how the 2D coor-

dinate systems in Table 2.1 can be derived from the 2D elliptical system. The gen-

eral coordinate systems are quite esoteric, rarely being used in application for the

Helmholtz equation, due to the difficult special functions that arise (Arscott, 1964,

§9–10). All 3D coordinate systems (especially rotational and general) have much

simpler special functions for the Laplace equation, where they see more applica-

tion. Applications include steady-state AEM (e.g. Fitts, 1991; Janković and Barnes,

1999; Suribhatla, 2007), gravitational potential (e.g. Kellogg, 1954), and electrostat-

ics (e.g. Hobson, 1931; Moon and Spencer, 1961a; Sten, 2006).

The 3D cylindrical analogs to the 2D coordinate systems utilized already are
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briefly discussed, mentioning the special functions which arise and how bound-

ary matching changes between two and three dimensions. Some remarks on the

solvability of the coordinate systems in Table 3.2 is given in section E.1, in the con-

text of Mathieu functions.

3.4.1 Cylindrical coordinates

Cylindrical 3D coordinates are conceptually the most straightforward extension of

the 2D coordinates already given, because they only have an additional second-

order z derivative, otherwise keeping the 2D special functions and adding one

additional set, with some slight modifications due to the additional set of eigenval-

ues. The issues related to the transition of the eigenvalues from the integers to real

numbers, as the interval width→ ∞ (section 3.3) also applies to the z-dimension

in all the cylindrical coordinates.

Circular cylinder The governing equation (2.3) in circular cylinder coordinates (see

Figure 3.15) is
∂2Φ̄

∂r2
+

1

r

∂Φ̄

∂r
+

1

r2

∂2Φ̄

∂θ2
+
∂2Φ̄

∂z2
= κ2Φ̄, (3.55)

with the condition that Φ̄ is 2π-periodic in θ. Substituting the form Φ̄(r, θ, z) =

B(r)Θ(θ)Z(z), this PDE separates into three ODEs (Moon and Spencer, 1961b,

p.15),

r
d

dr

(
1

r

dB

dr

)
−
(
κ2 + ν2 +

n2

r2

)
B = 0, (3.56)

d2Θ

dθ2
+ Θn2 = 0,

d2Z

dz2
+ Zν2 = 0, (3.57)

a slightly different modified Bessel equation (3.4) and two simple harmonic oscil-

lators (SHO). The Bessel equation now involves two separation constants (n and

ν) along with the physically-specified parameter, κ). The SHO in terms of Θ is the
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same as the 2D case, (3.3), while the SHO in terms of Z involves the the second

separation constant, ν. Solutions to these ODEs take the form

FIGURE 3.15. Surfaces of constant circular cylindrical coordinates; cylinder is r =
0.6, rays are θ = ±π

4
,±3π

4
, plane is z = 0.5.

Θn(θ) = A cos(nθ) + C sin(nθ),

Bn,ν(r) = D In(r
√
ν2 + κ2) + EKn(r

√
ν2 + κ2), (3.58)

Zν(z) = F cos(νz) +G sin(νz), (3.59)

where A, C, D, E, F and G are constants. Compared to the 2D case, there is an

additional set of eigenvalues to determine; n are controlled by periodicity, Θn(θ) =

Θn(θ + 2π), the ν eigenvalues are determined by the z-coordinate. As an example,

the solution inside a circular cylinder (assuming a finite z-interval to ensure integer

ν eigenvalues) would take the form

Φ̄−(r ≤ r0, θ, za ≤ z ≤ zb) =
∞∑
n=0

∞∑
ν=0

In(rβ) [an cos(nθ) + bn sin(nθ)]

× [cν cos(νz) + dν sin(νz)] ; (3.60)
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the doubly-infinite sum is characteristic of 3D problems, where multiple eigenval-

ues are used.

Elliptic cylinder The PDE in elliptic cylinder coordinates (see Figure 3.16) is

2

f 2 [cosh 2η − cos 2ψ]

[
∂2Φ̄

∂η2
+
∂2Φ̄

∂ψ2

]
+
∂2Φ̄

∂z2
= κ2Φ̄ (3.61)

with the condition that Φ̄ is 2π-periodic inψ. (3.61) can be separated by substituting

the form Φ̄(η, ψ, z) = H(η)Ψ(ψ)Z(z), leading to the ODEs (Moon and Spencer,

1961b, p.19)

d2Ψ

dψ2
+ (ω − 2q̃ cos 2ψ) Ψ = 0, (3.62)

d2H

dη2
− (ω − 2q̃ cosh 2η)H = 0, (3.63)

d2Z

dz2
+ Z(ν2 − κ2) = 0, (3.64)

where ω is the separation constant associated with periodicity in ψ, q̃ = −f 2ν2/4 is

a Mathieu parameter that no longer involves the physically-determined parameter

κ, but instead ν, the second separation constant. The general solutions to these

FIGURE 3.16. Surfaces of constant elliptical cylindrical coordinates; f = 0.75, cylin-
der is η = 0.6, hyperbolas are ψ = ±π

4
,±3π

4
, plane is z = 0.5.
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ODEs are

Ψn,ν(ψ) = A cen(ψ;−q̃) +B sen(ψ;−q̃), (3.65)

Hn,ν(η) = C Ken(η;−q̃) +DKon(η;−q̃) + E Ien(η;−q̃) + F Ion(η;−q̃), (3.66)

Zn,ν(z) = G cos
(
z
√
ν2 − κ2

)
+ J sin

(
z
√
ν2 − κ2

)
, (3.67)

where the dependence on ν in the two Mathieu solutions (3.65 and 3.66) comes

about through the definition of q̃ and A, B, C, D, E, F , G, and J are constants.

The Mathieu functions are computed for a given value of the Mathieu coefficient

(see Appendix E), which in this case depends on ν, requiring the eigenvalues in

the z-direction to be computed first.

3D Cartesian The simplest extension from 2D to 3D coordinates is in Cartesian,

where due to the unit metric coefficients, the problem does not change much. The

governing equation simply is

∂2Φ̄

∂x2
+
∂2Φ̄

∂y2
+
∂2Φ̄

∂z2
= κ2Φ̄ (3.68)

with no periodicity condition. (3.68) is separated into the same ODEs given in

section 3.3, but with an additional set of functions and eigenvalues, analogous to

those above. The ODEs are

d2X

dx2
+ n2X = 0, (3.69)

d2Y

dy2
+ ν2Y = 0, (3.70)

d2Z

dz2
+ Z(n2 + ν2 − κ2) = 0, (3.71)

where the X and Y parts of the problem are SHOs (with sines and cosines as so-

lutions) and the Z portion is the exponential equation, with ± exponentials as

solutions. Again, due to the symmetry of Cartesian coordinates, the roles of the

eigenfunctions can be switched trivially.
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3.4.2 Rotational coordinates

Though spherical coordinates are the only rotational coordinate system in common

use, prolate and oblate spheroidal coordinates could be developed to represent the

3D line segment and circular disc as singular elements, using an approach similar

to that for 2D elliptical coordinates (see Appendix E).

Spherical coordinates The PDE in spherical coordinates is (Özişik, 1993, §4)

∂2Φ̄

∂r2
+

2

r

∂Φ̄

∂r
+

1

r2 sin θ

∂

∂θ

[
sin θ

∂Φ̄

∂θ

]
+

1

r2 sin2 θ

∂2Φ̄

∂ψ2
= κ2Φ̄ (3.72)

with the conditions that Φ̄ is 2π-periodic in ψ and π-periodic in θ. Some repre-

sentative surfaces in this coordinate system are shown in Figure 3.17; detailed il-

lustrations of this and all other coordinate systems discussed here are found in

the physics literature (e.g. Morse and Feshbach, 1953; Moon and Spencer, 1961a,b).

Substituting the form Φ̄(r, θ, φ) = B(r)Θ(θ)Ψ(ψ) leads to the ODEs

d2Ψ

dψ2
+ n2Ψ = 0, (3.73)

r
d

dr

(
1

r

dB

dr

)
−
[
κ2 +

(
ν2 +

1

2

)
1

r2

]
B = 0, (3.74)

d

dθ

[(
1− θ2

) dΘ

dθ

]
+

[
ν(ν + 1)− n2

1− θ2

]
Ψ = 0. (3.75)

These are the SHO (3.73), modified spherical Bessel (3.74), and associated Legendre

(3.75) equations. General solutions to these ODEs are

Ψn(ψ) = A cos(nψ) + C sin(nψ), (3.76)

Bn(r) = D In+ 1
2
(κr) + E I−(n+ 1

2
)(κr), (3.77)

Θn,ν(θ) = F Pn
ν (θ) +GQn

ν (θ), (3.78)

where A, C, D, E, F , and G are constants, Pn
ν (θ) and Qn

ν (θ) are associated Legen-

dre functions (Abramowitz and Stegun, 1964, §8), and I±(n+ 1
2

) are the fractional-

order modified Bessel functions. Modified spherical Bessel functions of positive
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FIGURE 3.17. Surfaces of constant spherical coordinates; sphere is r = 0.6, cones
are θ = π

4
, 3π

4
, plane is ψ = π

2
.

fractional order are orthogonal to those of negative fractional order of the same

kind; Kn+ 1
2

are possible, but not needed here. There are several other possible

separated equations and solutions for spherical coordinates, using simplifications

arising from different symmetries (Özişik, 1993).

Spheroidal coordinates The two spheroidal coordinates are obtained from rotating

the 2D elliptical coordinate system about its major (prolate) and minor (oblate)

axes.

Prolate spheroid In prolate spheroidal coordinates (see Figure 3.18), the degen-

erate element is a line segment joining the two foci. Fitts (1991) simulated steady-

state flow to a 3D line source with this coordinate system. The modified Helmo-
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FIGURE 3.18. Surfaces of constant prolate spheroidal coordinates; f = 0.75, prolate
spheroid is η = 0.5, hyperboloids of two sheets are θ = π
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holtz equation is given as

1

f 2
(
sinh2 η + sin2 θ

) [∂2Φ̄

∂η2
+ coth η

∂Φ̄

∂η
+
∂2Φ̄

∂θ2
+ cot θ

∂Φ̄

∂θ

]
(3.79)

+
1

f 2 sinh2 η sin2 θ

∂2Φ̄

∂ψ2
= κ2Φ̄;

with the condition that Φ̄ is 2π-periodic in ψ and π-periodic in θ. Substituting the

form Φ̄(η, θ, ψ) = H(η)Θ(θ)Ψ(ψ) leads to the separated ODEs

d2H

dη2
+ coth η

dH

dη
−
[
κ2f 2 sinh2 η + n(n+ 1) +

ν2

sinh2 η

]
H = 0, (3.80)

d2Θ

dθ2
+ cot θ

dΘ

dθ
−
[
κ2f 2 sin2 θ − n(n+ 1) +

ν2

sin2 θ

]
Θ = 0, (3.81)

d2Ψ

dψ2
+ ν2Ψ = 0. (3.82)

Equations (3.80) and (3.81) are forms of the spheroidal wave equation, with solu-

tions analogous to angular and radial Mathieu functions, but comprised of infinite
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series of Legendre functions (Chu and Stratton, 1941). (3.82) is the simple har-

monic oscillator. These functions and their properties are summarized in Thomp-

son (1999) and Aquino et al. (2002), and given in great detail in Morse and Fesh-

bach (1953), Arscott (1964), and Li et al. (2002).

Oblate spheroid Oblate spheroidal coordinates (see Figure 3.19) have a circular

disc as the degenerate element of the system; the two foci of the 2D ellipse form a

ring when rotated about the minor axis of the ellipse. A circular hole in a confining

FIGURE 3.19. Surfaces of constant oblate spheroidal coordinates; f = 0.75, oblate
spheroid is η = 0.5, hyperboloids of one sheet is θ = π

4
, 3π

4
, plane is ψ = π

2
.

layer or 3D flow from a circular recharge area could be simulated naturally using

this coordinate system. The governing equation is given as

1

f 2
(
cosh2 η − sin2 θ

) [∂2Φ̄

∂η2
+ tanh η

∂Φ̄

∂η
+
∂2Φ̄

∂θ2
+ cot θ

∂Φ̄

∂θ

]
(3.83)

+
1

f 2 cosh2 η sin2 θ

∂2Φ̄

∂ψ2
= κ2Φ̄,
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which has the same periodicity as (3.79) and the two systems are clearly very sim-

ilar; more specifically, one can go from one to the other by transformations of the

form f = if and η = iη. Similarly substituting the separated form leads to the

following ODEs

d2H

dη2
+ tanh η

dH

dη
−
[
κ2f 2 cosh2 η + n(n+ 1)− ν2

cosh2 η

]
H = 0, (3.84)

d2Θ

dθ2
+ cot θ

dΘ

dθ
+

[
κ2f 2 sin2 θ + n(n+ 1)− ν2

sin2 θ

]
Θ = 0, (3.85)

d2Ψ

dψ2
+ ν2Ψ = 0, (3.86)

which have analogous solutions as the prolate spheroidal coordinate system.

3.4.3 3D summary

As avenues for extending LT-AEM to 3D problems, cylindrical and spherical ge-

ometries would be conceptually straightforward. Spheroidal (prolate and oblate)

coordinates would be useful geometries to implement (the line segment and cir-

cular plate are degenerate elements in these systems), but requiring development

of solutions analogous to that done for Mathieu functions here (see Appendix E).

Cylindrical coordinates may have the simplest special functions, but their infinite

boundaries lead to continuous eigenvalue problems, rather than discrete (integer)

eigenvalues, and therefore one must either deal with convergence issues due to

truncating or intersecting boundaries or deal with integrals over the continuous

eigenvalues. The parabolic and general coordinate systems do not appear to be

readily solvable or useful for the modified Helmholtz equation in hydrologic prob-

lems.
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Chapter 4

DISTRIBUTED SOURCES

Source terms often arise because a process is not explicitly simulated, therefore it

must be represented as a lumped or distributed source. Sources may arise because

we ignore the details of a physical, chemical, or biological process, representing

the net effect as a source term. Additionally, a source can be used to account for

an entire spatial dimension; boundary conditions with respect to a dimension not

simulated lead to distributed sources.

Both fluid transfer between matrix and continuum (i.e., dual-domain behavior)

and the effects that inertia have on the momentum balance (i.e., Darcy’s law) are

distributed sources arising from truly distributed physical processes.

In 2D, distributed sources also arise from boundary conditions that cannot be

handled due to the lack of an explicit third dimension. Surface recharge, delayed

yield from the water table, and leakage from adjoining layers are all boundary

conditions along the top or bottom of an aquifer; in 2D they become distributed

area sources. Though 3D representations are more physically realistic, often 2D

approximations are adequate or all that are feasible to solve. Most of the source

terms considered here are of the later sort; they would not carry over to a 3D LT-

AEM problem.

Elements that represent finite areas or are associated with the entire domain

can be governed by PDEs that differ from (2.3) either simply by material proper-

ties (which changes the definition of κ) or the presence of distributed source terms.

The LT-AEM sources dealt with here are all linear and can either come from a ho-

mogeneous (a source linear in Φ̄; non-linear sources could also lead to a homoge-

neous PDE, but cannot be handled by LT-AEM) or inhomogeneous PDE (a Poisson
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term). Homogeneous LT-AEM source terms are dealt with using the EE solutions

derived in Chapter 3, since (2.3) contains a term linear in Φ̄; additional terms can be

thought of as simply changing the definition of κ2. Inhomogeneous source terms

(including Φ0 in (2.2)) must be expressed in terms of a particular solution, requiring

a modified approach.

4.1 Inhomogeneous sources

2D area sources (e.g., circles, ellipses, or the entire domain) can be used to rep-

resent recharge (precipitation and infiltration) or discharge (evapotranspiration),

where the source term is not proportional to aquifer head or drawdown. For

steady AEM problems this leads to the Poisson equation (e.g. Haitjema and Kel-

son, 1996; Bakker, 1998), for transient flow problems it leads to a Poisson term in

the modified Helmholtz equation (e.g., the initial condition in (2.2)). Kuhlman and

Neuman (2006) showed that an impulse area source, applied at t = 0, can be used

to represent a non-zero initial condition.

4.1.1 Decomposition of potential

Adapting the method outlined by Strack (1989, §37) for steady-state analytic ele-

ments, specified area flux elements are derived in Laplace space by decomposing Φ̄

into homogeneous and particular solutions, separately considering Φ̄p inside and

outside of an area,

∇2Φ̄p − κ2Φ̄p = γ̄(x, p) inside, (4.1)

∇2Φ̄p − κ2Φ̄p = 0 outside, (4.2)

where γ̄ is the strength of the area flux that, in general, can be a function of both

space and time. The PDE used inside the area element has the same form as the

Laplace transformed diffusion equation, before the simplification of zero initial
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condition (2.2), with γ̄ = −Φ0/α. The total discharge potential is defined as a sum

of two functions,

Φ̄ = Φ̄p + Φ̄h, (4.3)

where Φ̄h is the homogeneous solution for which elements were derived in Chap-

ter 3. Φ̄p is identically zero outside the element, and satisfies the above PDE inside;

it is any particular (inhomogeneous) solution. The combination of these two func-

tions is used to make Φ̄ match correctly at element boundaries (there may be a

jump in Φ̄total if there is a change in K).

To ensure continuity in h, the jump in Φ̄h across the circumference of the circle

is proportional to the jump in Φ̄p,

Φ̄p

K−
=

Φ̄+
h

K+
− Φ̄−h
K−

. (4.4)

The homogeneous solution Φ̄±h is the total discharge potential due to all partici-

pating elements (Φ̄±h = Φ̄k± +
∑

Φ̄±bg). The modified form of the head matching

condition (2.27) for element n with a passive area flux is

1

K+

Φ̄n+ +

Nbg+∑
k=1
k 6=n

Φ̄k


r0

=
1

K−

Φ̄n− + Φ̄p +

Nbg−∑
k=1
k 6=n

Φ̄k


r0

(4.5)

similarly, the modified form of the normal flux matching condition (2.29) would

be

n ·

q̄n+ +

Nbg+∑
k=1
k 6=n

q̄k+


r0

= n ·

q̄n− + q̄p +

Nbg+∑
k=1
k 6=n

q̄k+


r0

(4.6)

Particular solutions can be found using several approaches; for some simpler dis-

tributions the particular solution may be found by inspection. The simplest non-

trivial form which Φ̄−p can take, so that Φ̄ still satisfies (4.2), is that of a recharge rate

which is constant in space but variable in time. The particular solution for constant

areal flux is simply

Φ̄p = −ḡ(p)
γ̄

κ2
, (4.7)
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where γ̄ is a constant source strength, and ḡ(p) represents the area source time

variability. In this simple case, since Φ̄p is constant in space, the modified normal

flux matching (4.6) reverts to its original form (Φ̄p does not contribute to normal

flux), and only the head matching equation must be modified.
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FIGURE 4.1. Non-zero initial condition in two circular regions; cross-section (a)
located on dashed line in (b); (c) contours from both LT-AEM and MODFLOW.

Figure 4.1 illustrates a constant non-zero initial condition applied over a cir-

cular sub-area of a finite circular domain with an outer no-flow boundary. Panel

(a) is a cross-sectional radial slice through the domain, illustrated as a dotted line

in panel (b). Panel (c) shows a comparison between MODFLOW (McDonald and

Harbaugh, 1988) and LT-AEM in the upper right quadrant of panel (a), correspond-

ing to the second curve in panel (a); the contours are essentially identical.

The general time variability term, ḡ(p), in (4.7) makes this relatively simple so-

lution quite flexible. For example, barometric pressure or tidal fluctuations can be

decomposed into key sinusoidal components, then loaded directly onto the aquifer

using (4.7) with ḡ(p) composed of a superposition of several Laplace-transformed

sinusoids. For barometric fluctuations, a thick vadose zone can also be accounted

for by exponentially dampening the sinusoidal components, to account the non-

instantaneous flow of air through the subsurface (Weeks, 1979). Accurate account-

ing for observations of these fluctuations in open boreholes requires applying a
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corresponding loading condition at the wellbore.

When more complex particular solutions are needed, they can be derived us-

ing the variation of parameters method, which integrates two known solutions to

the homogeneous problem, which could be eigenfunctions (Morse and Feshbach,

1953, p.529). Lastly, Strack and Janković (1999) developed an area source for the

Laplace equation in a general functional form, to allow matching quite arbitrary

2D distributions of Poisson terms.

4.2 Homogeneous sources

Homogeneous distributed source terms arise from effects that are proportional to

head or drawdown in the aquifer. For example, transient leakage from adjacent

aquitards (§ 4.2.1), delayed yield in unconfined systems (§ 4.2.3), and dual domain

behavior (e.g. Moench, 1984) all lead to homogeneous source terms that can be

handled with the same techniques LT-AEM uses to handle transient effects.

In the AEM literature, Bakker and Strack (2003) arrived at the Helmholtz equa-

tion by considering steady multi-aquifer flow. Bakker and Nieber (2004a) also

reached this governing equation by from linearizing steady unsaturated flow. Fur-

man and Neuman (2003), Bakker (2004c), and this dissertation also arrive at the

Helmholtz equation from applying an integral transform to the diffusion equation.

de Glee (1930) solved the problem of steady flow to a well in a leaky aquifer, re-

sulting in a solution of the form K0(r), the fundamental solution for the Helmholtz

equation. Although the modified Helmholtz equation is typically not considered

one of the fundamental equations of groundwater flow, it arises in numerous situ-

ations where source terms in homogeneous PDEs are considered. The methodol-

ogy used here to solve the transient flow problem can easily be extended to handle

these other terms, with little or no change to the solution methodology, presented

in Chapter 2.
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4.2.1 Leaky aquifer source term

An example of a 2D homogeneous source term is leakage from an adjacent un-

pumped aquitard, following the approach of Hantush (1960) (see Figure 4.2).

FIGURE 4.2. Leaky system conceptual diagram

Beginning again with (2.1) but keeping the source term, G, when converting to

Φ and taking the Laplace transform; the aquifer flow equation with a distributed

source is

∇2Φ̄1 − κ2
1Φ̄1 + Ḡ = 0, (4.8)

where variables with subscript 1 pertain to the aquifer and 2 or 3 will relate to

an adjacent aquitard. Assuming vertical flow in the overlying aquitard (common

when K1 � K2), the flow equation in the aquitard simplifies to the ODE

d2Φ̄2

dz2
− κ2

2Φ̄2 = 0, (4.9)

assuming a zero initial condition in the aquitard. Head matching at the aquifer-

aquitard interface (z = 0) gives the condition

Φ̄2(z = 0) = K2Φ̄1(x)/K1, (4.10)
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where the aquifer PDE is 2D (x and y) and the aquitard ODE (z) is 1D, being orthog-

onal to the aquifer problem; a different aquitard ODE is posed at each x location.

At the far side of the aquitard (z = b2) there is a no-drawdown condition, Φ̄2 = 0

(see case I of Figure 4.2). The solution to (4.9) that satisfies both of these conditions

is

Φ̄2(z) =
K2Φ̄1

K1

[coshκ2z − cothκ2b2 sinhκ2z] . (4.11)

Differentiating (4.11) and evaluating it at z = 0 gives the vertical flux from the

aquitard at the interface,

Ḡ =
1

b1

[
∂Φ̄2

∂z

]
z=0

. (4.12)

Substituting this into (4.8), the aquifer flow PDE becomes

∇2Φ̄1 −
[
κ2

1 + κ2
K2

b1K1

cothκ2b2

]
Φ̄1 = 0. (4.13)

This PDE can be solved using the same elements from Chapter 3, because the ef-

fects of the neighboring aquitard contributes the second terms in brackets in (4.13),

which is a constant, and therefore only redefines κ2 in (2.3). Since the aquitard

ODE is linear with homogeneous initial and boundary conditions, superposition

is valid.

Exploiting the axial symmetry in this case, Figure 4.3 shows dimensionless re-

sults; see definitions in equation (3.15). The curve labeled E1(tD/4) represents the

non-leaky Theis (1935) solution (2.22), shown for comparison. Less drawdown is

seen in the leaky aquifer, because the leaky layers supply water to the aquifer at a

rate proportional to the level of drawdown.

A similar procedure can be used to develop leaky source elements with differ-

ent upper aquitard BC; the PDE for a no-flow BC at z = b2 is (case II, the upwardly-

deviating curves in Figure 4.3)

∇2Φ̄1 −
[
κ2

1 + κ2
K2

b1K1

tanhκ2b2

]
Φ̄1 = 0. (4.14)



101

10
-1

10
0

10
1

10
0

10
2

10
4

10
6

10
8

10
10

10
12

h
D

tD

E1(tD/4)

leaky case I

leaky case II

leaky b2
 → ∞

b2=1

b2=1/10

b2=1

b 2
=1/

10

FIGURE 4.3. Leaky response at r = 1 due to point source, comparing results
for different aquitard BC and b2 with the non-leaky E1 solution; Ss2/Ss1 = 100,
K1/K2 = 5.

Case II is limited by the assumption of vertical flow in the aquitard to early-time

flow. Significant horizontal gradients will develop once drawdown has reached

the upper boundary (Malama et al., 2007), which this simplified model cannot

properly account for.

For the case b2 → ∞, cothκ2b2 in (4.13) and tanhκ2b2 in (4.14) both simplify to

unity (the middle leaky curve in Figure 4.3), and the PDE then becomes

∇2Φ̄1 −
[
κ2

1 + κ2
K2

b1K1

]
Φ̄1 = 0. (4.15)

The effects of the boundary condition at z = b2 are only observed at later time

when the three curves separate (the thin curves in Figure 4.3 represent an aquitard

1/10 as thick as the heavy curves, they deviate at an earlier time). The effects of

two aquitards (above and below) can also be included, as done by Hantush (1960).

For example, the PDE for a system consisting of a type I aquitard above (layer 2)
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and a type II aquitard below (layer 3) is

∇2Φ̄1 −
[
κ2

1 + κ2
K2

b1K1

cothκ2b2 − κ3
K3

b1K1

tanhκ3b3

]
Φ̄1 = 0. (4.16)

This model produces homogeneous source terms in the aquifer PDE for aquitards

which are immediately adjacent to the main aquifer. Using the model of Hantush

(1960), four or more layer system do not produce solutions which simply depend

on the drawdown in the main aquifer. Multi-aquifer systems are addressed in a

more general manner in section 4.2.2.

The finite wellbore (3.14) and wellbore storage (3.20) type wells can just as eas-

ily be solved for this type of problem. Moench (1985) developed a leaky solution

for large-diameter wells, not unlike the single-well solution developed here. A ma-

jor advantage of the LT-AEM approach is that these elements may be combined,

using boundary matching to solve more complex geometries.

Leaky source examples The leaky PDE (e.g., (4.13), (4.14), or (4.15)) could be solved

for the entire domain, as was done in Figure 4.3 for a pumping well in an infinite

aquifer, the leaky PDE can be confined to a region bounded by circles or ellipses,

or the complementary infinite domain with circular or elliptical regions cut from

it. The boundary matching approach used here is what allows different PDEs to

be solved in different regions; superposition of solutions to different PDEs is not

allowed.

Figures 4.4 and 4.5 show a situation where a well is pumping from a confined

aquifer, but there are six “holes” in the confining layer, separating the confined

aquifer from another, unpumped aquifer. The two aquifers are initially in equi-

librium with each other (there is no leakage), but as the main aquifer is pumped,

leakage occurs through the six holes, assuming the rest of the aquitard is imperme-

able. Figure 4.6 illustrates that this spatially-distributed leakage falls between the

confined behavior and fully-leaky behaviors, as would be expected. The geometry
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FIGURE 4.4. Contours of head due to a point source in a system of leaky (type I)
circles in a confined aquifer, at t = 0.04

of the leaky circles causes the drawdown at point A to be less than point B (except

at very late time); despite the fact that A is closer, B is not surrounded by leaky

sources. For comparison, the sources for the uniformly leaky case are solid lower

lines.

Figure 4.7 shows drawdown due to all three types of leaky systems at two ob-

servation locations relative to a specified total flowrate line source (3.40) located

at −0.75 ≤ x ≤ 0.75, y = 0. The line source could be used to model the effects of

a river on an aquifer with a leaky aquitard immediately below it. At larger dis-

tance the time-drawdown plot for the line source more closely resembles the same

plot for the point source solution in Figure 4.3. In this example, K/K2 = 1000,

S/S2 = 0.001, b2 = b = 1. The effects that the different parameters and aquitard

boundary conditions have on the drawdown due to a line source in a leaky aquifer

is analogous to the response due to a point source. One significant difference be-

tween the two is that the drawdown at the line source (η = 0;−f ≤ x ≤ f, y = 0)

is finite, while drawdown at a point source (r = 0) is not.
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4.2.2 Layered system solution

Transient multi-aquifer systems have been considered by Neuman and Wither-

spoon (1969), Hemker and Maas (1987), Li and Neuman (2007), and Malama et al.

(2008). We follow the general transient matrix formulation of Hemker and Maas

(1987) and Maas (1987), but we do not limit the solution to radial flow to a single

well in the multi-layer system as they did. The matrix formulation (Maas, 1986) is

valid for any number of layers (even n → ∞); the boundary conditions at the top

and bottom of the system (see Figure 4.8) are later imposed on the general solution.

The multi-aquifer transient problem does not result in a homogeneous governing

equation in terms of a single potential. Despite this difference, this material is

presented in this chapter because the matrix techniques used here do result in an

system of uncoupled equations for a modified potential; each uncoupled aquifer

then behaves like the other homogeneous sources described in this chapter. The

final solution is found through a matrix-vector product back-transformation.

Extending the aquifer-aquitard system of section 4.2.1 to n aquifers and n + 1

aquitards (see Figure 4.8) is relatively straightforward, resulting in a matrix equa-

tion for Φ̄i and Φ̄′i, the discharge potential in the ith aquifer and aquitard respec-

tively.

Similar to the leaky problem, flow in aquifers is assumed to be 2D (horizontal

x, y), while flow in aquitards is assumed 1D (vertical z). The governing equation

in the ith aquifer is

∇2Φ̄i − κ2
i Φ̄i + Ḡi↑ − Ḡi↓ = 0, (4.17)

where the source terms due to the aquitards above (↑) and below (↓) aquifer i are

Ḡi↑ =
1

bi

∂Φ̄′i
∂zi

∣∣∣∣
zi=0

, (4.18)

Ḡi↓ =
1

bi

∂Φ̄′i+1

∂zi+1

∣∣∣∣
zi+1=b′i+1

; (4.19)
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FIGURE 4.8. Schematic of layered system, after Hemker and Maas (1987)

primed quantities are related to aquitards, unprimed ones are related to aquifers.

Since the aquifers have no z-coordinate, unprimed zi is the local coordinate across

the aquitards (0 ≤ zi ≤ b′i). 1D flow in the ith aquitard is given by the ODE

d2Φ̄′i
dz2

i

− κ′2i Φ̄′i = 0, (4.20)

with a general solution of the form

Φ̄′i(z, p) = β′i cosh ziκ
′
i + δ′i sinh ziκ

′
i, (4.21)

where β′ and δ′ are coefficients to be determined from boundary conditions at the

boundaries between aquifers and aquitards.

Up to this point, the development is identical to that for the leaky problem, but

generalized to multiple aquifers. In the leaky system, simple boundary conditions

were applied at the far side of the adjoining aquitard (no drawdown or no flow),

resulting in simple solutions to (4.21) and therefore simple source terms (4.18 and

4.19). The leaky solutions only depended on the drawdown in the pumped aquifer.
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By considering the head in the other aquifers to be a dependent variable, a system

of equations for potentials in all the layers must be solved simultaneously.

Performing head matching at the top and bottom of each aquitard to determine

the coefficients β′i and δ′i in (4.21), and taking the derivative of (4.21) to determine

the vertical flux at the aquifer/aquitard interface leads to

Ḡi↑ =
K ′iκ

′
i

biKi−1 sinh (κ′ib
′
i)

Φ̄i−1 −
K ′iκ

′
i coth (κ′ib

′
i)

biKi

Φ̄i, (4.22)

Ḡi↓ =
K ′i+1κ

′
i+1 coth

(
κ′i+1b

′
i+1

)
biKi+1

Φ̄i+1 −
K ′i+1κ

′
i+1

biKi sinh
(
κ′i+1b

′
i+1

)Φ̄i; (4.23)

substituting these into (4.17) and expressing the problem in matrix form leads to

∇2Φ̄−AΦ̄ = 0 (4.24)

where A is a tridiagonal matrix that accounts for the leaky source terms (4.22 and

4.23) that include the effects of adjacent aquifers and transient effects of the current

aquifer (second term in (4.17)) and Φ̄ is a vector of the discharge potentials in all

the aquifers. A characteristic section of A is
. . . . . . . . .
0 Ai−1,i−2 Ai−1,i−1 Ai−1,i 0 . . . . . .
. . . 0 Ai,i−1 Ai,i Ai,i+1 0 . . .
. . . . . . 0 Ai+1,i Ai+1,i+1 Ai+1,i+2 0

. . . . . . . . .

 (4.25)

where the terms in row i of (4.25) are

Ai,i−1 =− K ′iκ
′
i

biKi−1

csch (κ′ib
′
i) , (4.26)

Ai,i =
K ′iκ

′
i

biKi

coth (κ′ib
′
i) +

K ′i+1κ
′
i+1

biKi

csch
(
κ′i+1b

′
i+1

)
+ κ2

i , (4.27)

Ai,i+1 =−
K ′i+1κ

′
i+1

biKi+1

coth
(
κ′i+1b

′
i+1

)
. (4.28)

The approach taken here is to decouple the aquifers by substituting the eigenval-

ues and eigenvectors of A. This allows their solution to be computed using the
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standard scalar techniques already given. For a problem with 5 or more aquifers

this leads to a numerical solution; this limitation is related to the fact that there is

no algebraic solution to the roots of a polynomial of higher than fourth order. This

numerical-only solution could be considered to degrade the elegance of the other-

wise analytic (in Laplace space) LT-AEM. The approach is useful though, because

it extends 2D LT-AEM to multi-aquifer systems that would otherwise need to be

handled using 3D models.

Substituting A = SΛS−1 into (4.24), gives

∇2Φ̄− SΛS−1Φ̄ = 0 (4.29)

where S is an orthogonal matrix (that is guaranteed to have an inverse) composed

of the eigenvectors of A arranged as columns and Λ is a diagonal matrix of the cor-

responding eigenvalues of A (e.g. Strang, 1988, §5.2). Pre-multiplying both sides

of (4.29) by S−1 and defining the new potential Ψ̄ = S−1Φ̄ leaves

∇2Ψ̄−ΛΨ̄ = 0, (4.30)

which is a set of n uncoupled modified Helmholtz equations, because Λ is a diag-

onal matrix of eigenvalues,

∇2Ψ̄1 − λ1Ψ̄1 = 0

∇2Ψ̄2 − λ2Ψ̄2 = 0 (4.31)
...

Once the eigenvalues of A are computed, the solution for Ψ̄i in each layer can be

computed independently, then they are converted back through the matrix-matrix

multiplication

Φ̄ = SΨ̄ = SS−1Φ̄ = IΦ̄, (4.32)

where I is the identity matrix.



110

The approach of Hemker and Maas (1987) only considers aquifer that “com-

municate” through leaky layers between them, this always leads to a tridiago-

nal A. The same eigensolution decoupling technique used here could be applied

to multi-aquifer systems with other possible inter-aquifer connections (e.g., un-

pumped wells screened across multiple aquifers) or completely different physical

arrangements. These alternative connections between aquifers would lead to off-

diagonal A terms, but the approach would remain unchanged.

The solution presented by Hemker and Maas (1987) was for radially symmetric

flow to a well, but any of the LT-AEM elements derived in Chapter 3 could be ap-

plied to this system of equations, even different source terms (e.g., surface recharge

or the unconfined source considered in section 4.2.3) or elements (e.g., line source

on surface, point sources in some of the aquifers below) in the different aquifers

of the system. Due to linearity, superposition of compatible systems is valid (i.e.,

layers have zero initial conditions and the same properties in each layer). Bakker

and Strack (2003), Bakker (2004a), and Bakker (2006) have developed similar AEM

solutions to multi-layer problems for steady-state flow.

System boundary conditions simply redefine the first and last rows of A, as

were done for the leaky case. No-drawdown (left half of Figure 4.8) or no-flow

(right half) conditions may be specified at the top of aquitard 1, or the bottom or

aquitard n. The thickness of the extremal aquitards may also be made very large,

with similar simplifications to (4.15).

4.2.3 Boulton’s delayed yield source term

Boulton’s delayed yield solution (1954) is an empirically-derived model of the ef-

fects that delayed yield has on flow in 2D aquifers. Herrera et al. (1978) showed

that while the general 2D integro-differential model for an unconfined aquifer is

approximate at very small time and small radial distances from a pumping well, it
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can be used successfully elsewhere. Herrera et al. (1978) give a generalized form

of Boulton’s equation for flow in the aquifer as

K∇2Φ = Ss
∂Φ

∂t
+ Sy

∫ t

0

∂Φ

∂t

∣∣∣∣
t=τ

B(r, t− τ) dτ, (4.33)

where Sy is dimensionless specific yield and B(r, t− τ) is a convolution kernel; for

simplicity Boulton chose B(t− τ) = α̃e−α̃(t−τ). The fitting parameter α̃, [T−1], does

not have direct physical meaning. To produce a solution that depends on physical

parameters, Herrera et al. (1978) used a more complex convolution kernel,

B(t− τ) = 2
∞∑
n=1

γn
ρ2
n − 1 + σ2

e−γn(t−τ), (4.34)

where σ =
√
Ss/Sy, γn = Kzρ

2
n/(bSy), Kz is vertical aquifer hydraulic conductivity,

b is aquifer thickness and ρn are roots of the transcendental equation

ρn = tan(ρnσ)

(
1

σ
− σ

)
. (4.35)

Equation 4.33 is (2.3) with an extra time convolution term of the form (2.18),

which is equivalently multiplication of the image functions in Laplace space (§ 2.4).

Both kernels have transforms of the type L{B(t− τ)} = ξ/(ξ+p). Assuming a zero

initial condition, the transformed flow PDE for Boulton’s (1954) kernel is

∇2Φ̄−
[
κ2 +

Syp

K

α̃

α̃ + p

]
Φ̄ = 0. (4.36)

Analogously, the transformed PDE using the kernel of Herrera et al. (1978) is

∇2Φ̄−

[
κ2 +

2Syp

K

∞∑
n=1

γn
(ρ2
n − 1 + σ2)(γn + p)

]
Φ̄ = 0. (4.37)

Either Boulton’s empirical α̃ can be equated with physical parameters by compar-

ing it to the form of (4.34), or the more complex kernel of Herrera et al. (1978) with

physically-based parameters can be used. (4.34) gives a more realistic solution at

small time, but involves solving for the roots of a non-linear equation and a poorly-

converging infinite series. The simplest approximation (when Ss = 0, ρ2
1 = 3 and
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FIGURE 4.9. Drawdown due to a point sources (3.14) for Boulton’s unconfined
PDEs at r = 1 through time

ρ2
n6=1 = 0) leads to the correspondence α̃ = 3Kz/(Syb). In Figure 4.9 r = b = 1,

therefore β = r2Kz/(Kb
2) is proportional to the aquifer anisotropy ratio.

The delayed yield source term can also be applied to the line element (ellipse

with η0 = 0), potentially representing a horizontal well or a recharging river (ig-

noring the non-linear effects of the vadose zone). In Figure 4.10 the curve of draw-

down observed at x = 0, y = 0 (on the line source y = 0, −0.75 ≤ x ≤ 0.75) shows

the most drawdown and is the least shaped like the curves for an unconfined point

source (see Figure 4.9) due to the geometry of the source. As the observation point

moves away from the line (as y increases), the geometry effects becomes smaller;

at large distance, we expect the line and point sources to behave similarly. Note

that in contrast to the point source, which produces infinite drawdown at r = 0,

the line source produces finite drawdown at η = 0 (y = 0 in Figure 4.10).

For comparison with the point source shown in Figure 4.9, Figure 4.11 illus-

trates a confined line source using SS (the upper curve), one using Sy (lower curve),
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and the unconfined line source. Different values of β represent different Kz in the

aquifer; aside from the source geometry, the solution is identical to the unconfined

point source.

Boulton’s model is used here for the unconfined flow problem to illustrate how

an integro-differential equation with time convolution can be handled using LT-

AEM techniques, rather than to advocate its use as the most physically realistic

model of unconfined aquifer flow.

The leaky (§ 4.2.1) and unconfined solutions can be combined. For a well in

a shallow unconfined aquifer, with a leaky aquitard below; the governing flow

equation would be

∇2Φ̄−

[
κ2 + κ2

K2

b1K1

+
2Syp

K1

∞∑
n=1

γn
(ρ2
n − 1 + σ2)(γn + p)

]
Φ̄ = 0. (4.38)

using the leaky (4.15) and unconfined (4.37) solutions already given. This illus-

trates the ease with which new solutions may be constructed in Laplace space,
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allowed by the flexibility of the numerical inverse transform. This type of ar-

rangement (2D unconfined aquifer flow, 1D aquitard flow) has been recently in-

vestigated by Zlotnik and Zhan (2005), a special case of the more general 3D flow

solution of Malama et al. (2007).

4.2.4 Source term from Darcy’s law

Higher-order time derivatives in the governing time-domain PDE can also add

a homogeneous source term to the transformed PDE. For example, consider the

more complete transient form of Darcy’s law, averaged from or based on analogy

with the Navier-Stokes equations (Bear, 1988, §4.7), given as

q = −
(
∇Φ + τ

∂q

∂t

)
, (4.39)

where τ is a relaxation parameter [T] that is very small, therefore the q time deriva-

tive term is usually neglected. Löfqvist and Rehbinder (1993) define τ = K/(ng),
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where n is dimensionless porosity and g is the acceleration due to gravity [L/T2].

Nield and Bejan (2006, §1.5) contend that τ = ρca, where ρ is the fluid density and

ca is the acceleration coefficient tensor that depends on the geometry of the largest

pores. While details related to the physical significance of τ may be under con-

tention, in general it is believed to be related to the amount of time it takes for the

system to become diffusion-dominated.

Applying the Laplace transform to (4.39) gives

q̄ = −
[
∇Φ̄ + τ (pq̄− q0)

]
(4.40)

where q0 is the initial flux condition. Assuming this is zero, solving for q̄, and

incorporating this into the Laplace-transformed mass balance expression

−∇ · q̄ =
p

α
Φ̄p (4.41)

leads to the governing flow equation that incorporates the additional transient ef-

fects,

∇ ·
[

1

1 + τp
∇Φ̄

]
− κ2Φ̄ = 0. (4.42)

This PDE can be written as

∇2Φ̄− κ2 [1 + τp] Φ̄ = 0, (4.43)

which is again of similar form to (2.3), (but with p2 in the wave number, repre-

senting ∂2/∂t2) allowing its ready solution with existing LT-AEM techniques (see

Figure 4.12). (4.43) in the time domain is

∇2Φ =
Ss
K

[
∂Φ

∂t
+ τ

∂2Φ

∂t2

]
, (4.44)

which is the damped wave equation. The diffusion equation is a simplified form

of (4.44) (as τ → 0). For problems governed by the wave equation, pulses al-

ways propagate at finite speed (e.g., see steep leading edge of s surface in Fig-

ure 4.12b), while the diffusion equation allows changes to propagate at infinite
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FIGURE 4.12. (a) Time drawdown at r = 1 and (b) distance drawdown at t = 0.01
for finite radius point source ((3.14), rw = 0.01) considering inertia effects.

speed (Vásquez, 2007); although the changes are infinitesimally small, and hence

tolerated. In the time domain, τ is attached to a ∂2Φ/∂t2 term, which only becomes

significant when there are rapid transient changes (Löfqvist and Rehbinder, 1993).

The effect of not considering this “inertia” term, in situations where it may be sig-
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nificant (e.g., the gravel-packed region surrounding a pumping well), may lead to

slight over-estimation of storage parameters using diffusion (see Figure 4.12a).
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Chapter 5

NUMERICAL INVERSE LAPLACE TRANSFORM

Analytic techniques for evaluating Mellin’s integral (A.4), including the method

of residues, are very problem-specific and may only yield a solution in the form

of an integral or a slowly converging infinite series; using a numerical L−1 allows

flexibility and generality (Cohen, 2007).

For all numerical inverse Laplace transform algorithms, a vector of image func-

tion values are computed for required values of p, then the object function is ap-

proximated from this vector. Furman and Neuman (2003) utilized the doubly-

accelerated Fourier series method of de Hoog et al. (1982); the current LT-AEM im-

plementation can also utilize other algorithms: Post-Widder (Widder, 1946), Weeks

(Weeks, 1966), and Chebyshev (Piessens, 1972). A solution is considered more ro-

bust if it is computed using two different methods yielding similar results (Davies

and Martin, 1979).

5.1 General algorithm

For LT-AEM, an ideal inverse transform method accurately inverts Φ(x, t) for as

wide a range of t as possible, using the fewest evaluations of Φ̄(x, p). In LT-AEM,

the vast majority of computational time is spent computing Φ̄(x, p), so an L−1 al-

gorithm which is slower and more complicated to implement, but makes very

efficient use of the image function evaluations would be more efficient overall.

Published numerical surveys of L−1 algorithms by Davies and Martin (1979) and

Duffy (1993) have not broken the effort required for the inverse transform into

these two contributions. Most published inverse Laplace transform routines call

the image function (here an entire Laplace-space AEM model) as a subroutine, not



119

taking advantage of the spatial relationships between calculation locations (each

point in the domain is solved independently). While more general, this behavior

could lead to incorrect recommendations as to the optimum inverse algorithm for

applications with a spatial structure. For LT-AEM problems, we found the Fourier

series methods (most of its many variants) converge fastest, are least sensitive to

auxiliary parameters, and are able to transform Φ(x, t) across at least a log-cycle of

t using the vector of Φ̄(x, p) associated with the largest time in that decade.

FIGURE 5.1. Numerical inverse Laplace transform flowchart

Figure 5.1 illustrates the flow of an LT-AEM calculation. The required values

of the Laplace parameter, p, are determined at the beginning of the calculation;

this approach optimizes efficiency of the routine, but makes it difficult to incorpo-

rate adaptive algorithms, which determine their p values as required during the

calculation.

LT-AEM itself is a two-step process (stages 1 and 2), step 1 being independent
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of the locations where the solution is required (unlike the single step finite element

method). The image function is computed for each required value of p and at

each desired space location, then these results are passed to the numerical inverse

Laplace transform algorithm as a matrix.

The arrows on the left of Figure 5.1 indicate what steps can be skipped in a

re-calculation, depending on what new information is required. If more Φ(t,x)

are required at new times (which are in the same log cycle of time as previous

times – not requiring new values of p), but locations where the solution is already

computed, the results of the LT-AEM model need not be re-computed; only stage

3 requires re-calculation. If the solution is required at new locations (and poten-

tially new times but only those that reuse the same p values), then the LT-AEM

solution can be recomputed using the existing coefficients, requiring going back

to re-compute stages 2 and 3. Finally, if the solution is desired for new problem

geometry, parameters or times that vary by more than a log cycle from existing

times, the entire problem must be re-computed, since new values of p are required

in every step of the process.

5.2 Parallelization

All numerical inverse transform algorithms allow for parallel LT-AEM implemen-

tation, since p is a parameter (no time marching). Each Φ̄(x, p) can be computed

independently on a different slave processor, then the inverse LT algorithm as-

sembles Φ(x, t) on a master processor (calculation of the L−1 takes an insignificant

amount of time compared to the calculation of the required Φ̄(x, p)). This coarse-

grained parallelization is simple to implement and usually results in a nearly ideal

improvement in speed (i.e., n processors ≈ n times faster) (Davies and Crann,

2002), in contrast to more complicated (and less successful) schemes needed to

parallelize the solution of time-marching methods, where large amounts of infor-
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mation must be shared between processors.

Simple threaded parallelization (as opposed to message passing paralleliza-

tion) can be achieved using OpenMP (LLNL, 2008). OpenMP is not a library to

be added at link-time, but rather it requires a compiler that can create special

threaded executables from the OpenMP source statements. The GNU project pro-

duces a free Fortran90 compiler with OpenMP support (FSF, 2008). OpenMP cre-

ates one executable, requiring a multi-processor computer to run it in parallel, but

can be almost trivially added to existing Fortran code through special comments

surrounding loops in the code which should be parallelized. This allows OpenMP

code to be compiled either serially or threaded, changing from one to the other just

by changing compiler options.

Simple parallelization of the LT-AEM has been performed on two levels. First a

parallel BLAS library (TACC, 2008) is used for matrix computations, requiring no

changes to the code, only linking with the GotoBLAS library. Secondly, OpenMP

is used to distribute the calculation of the matching coefficients for each value of p

to different threads. With the recent proliferation of multi-processor desktop com-

puters, this approach is effective and much simpler than message-passing schemes

(e.g., MPI (Hempel, 1994)) needed for communication over a network between

computers on a cluster.

5.3 Specific methods

There are many numerical L−1 algorithms; most of them can be broadly classi-

fied into those that approximate (A.4) using quadrature (e.g. de Hoog et al., 1982)

and those that approximate Φ̄(x, p) using basis functions that have analytic inverse

transforms (e.g. Piessens, 1972; Weeks, 1966).

Three classes of numerical L−1 algorithms which have historically proven use-

ful in hydrology and specifically in LT-AEM are discussed in more detail in the
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following sections. Numerical comparison of results for a few representative LT-

AEM elements is given at the end of the chapter.

5.3.1 Post-Widder

The Post-Widder inversion expression (Widder, 1946), can either be considered

an alternative definition of the inverse Laplace transform, or it can be considered

of the functional approximation form. The approximation in Laplace space is a

Taylor series in the image function (equivalent to a power series in t of the object

function – see Appendix A). The method is defined as a limit of a sequence, Φ(t) =

lim
n→∞

Φn(t); each term in the sequence is defined as

Φn(t) =
(−1)n

n!
pn+1∂

nΦ̄(p)

∂pn
, p =

n+ 1

t
, (5.1)

where the required values of p directly depend on the desired value of t. The

Stehfest (1970) algorithm is a numerical approximation of (5.1), using finite dif-

ferences to replace the derivative and acceleration of the sequence {fn(t)}∞0 with

Salzer summation. The Stehfest algorithm is

Φ(t) ≈ ln 2

t

N∑
k=1

Vk Φ̄

(
k

ln 2

t

)
, (5.2)

where the Vk coefficients are independent of Φ̄(p). The Vk only depend on the total

number of terms, N (which must be even); they are given by

Vk = (−1)
N

2+k

min(j,N
2

)∑
j= j+1

2

j
N
2 (2j)!

(N
2
− j)! j! (j − 1)! (k − j)! (2j − k)!

. (5.3)

The Stehfest algorithm has seen application in hydrology (e.g. Moench and Ogata,

1981, 1984; Hemker and Maas, 1987; Lee, 1999), because it only requires real p

values and is algorithmically simple. The Vk coefficients can be computed once

and stored as constants. Unfortunately, Vk quickly become very large and the terms



123

oscillate in sign as k increases, making the optimum N a function of the working

precision of the computer. For double precision, N = 16 is considered optimum;

larger N suffer from severe cancellation. The algorithm is not designed to handle

functions with step changes or oscillations in t, unless N is very high.

Abate and Valkò (2003) showed that the Stehfest algorithm can be accurately

applied in an arbitrary precision environment, such as Mathematica (Wolfram Re-

search, 2007) or MPF90 (Bailey, 1995), where Vk can be computed accurately for

large N . The downfall of this approach is that the entire LT-AEM model must also

be implemented in arbitrary precision, which is usually impossible or very expen-

sive. Philosophically, the arbitrary precision approach is also inelegant, since it

requires brute numerical precision to achieve what can easily be done using com-

plex double precision in other methods.

When the image function is available in closed form, (5.1) may be evaluated

directly. For general LT-AEM problems, where the generalized Fourier series coef-

ficients are computed from a least-squares problem, analytically computing ∂/∂p

is typically not possible.

In the cases where coefficients may be computed analytically (passive or simple

active elements), this method may be applied. An example of this is given using

the impulse point source, which has the image function

Φ̄pt(r, p) =
Q

2π
K0

(
r

√
p

α

)
, (5.4)

corresponds to the object function

Φpt(r, t) =
Q

4πt
exp

[
− r2

4tα

]
, (5.5)

which is used to evaluate the error of the following numerical results. Convo-

lution of (5.4) with 1/p gives the traditional Theis (1935) solution (see example

section 2.4.2).

Applying (5.1) to (5.4) results in an unusually simple expression, because of

the recurrence relationships that exist for Bessel function derivatives (McLachlan,
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1955, p.204). The Post-Widder expression can be simplified to the form

Φn(r, t) =
Q

2πp

pn+1

n!

rnKn

(
r
√

p
α

)
2n(αp)n/2

, p =
n+ 1

t
. (5.6)

For α = 1, r = 0.1, Q = 1, and t = 0.25, values of the errors committed in esti-

mating Φn(r, t) are listed in Table 5.1. Although the Post-Widder solution itself is

only accurate for very large values of n, the series can be accelerated to achieve

higher accuracy. Aitken’s δ2-process (Antia, 2002, §6.2) is used because it only re-

quires three adjacent terms of the series. Stehfest (1970) utilized Salzer summation

(requiring the 1−N series) in his numerical approach.

A benefit of the Post-Widder approach, when it can be applied, is the solution

only requires one term for the non-accelerated Post-Widder solution, or three terms

for the δ2-process accelerated solution (there is no n = 1, 2 in Table 5.1). Higher-

order derivatives for some functions may be ill-defined, may not have convenient

recurrence relationships, or may be more involved to compute than Bessel func-

tions.

n error accelerated error
|Φn − Φ(t)| |δ2 [Φn]− Φ(t)|

3 9.668686 ×10−3 1.722383 ×10−5

4 6.503074 ×10−3 1.174752 ×10−5

5 4.893049 ×10−3 8.153614 ×10−6

6 3.920859 ×10−3 5.810009 ×10−6

7 3.270615 ×10−3 4.295339 ×10−6

8 2.805238 ×10−3 3.286391 ×10−6

9 2.455745 ×10−3 2.588455 ×10−6

10 2.183659 ×10−3 2.088368 ×10−6

20 1.035797 ×10−3 5.067141 ×10−7

30 6.788946 ×10−4 2.222317 ×10−7

40 5.049138 ×10−4 1.241183 ×10−7

50 4.019141 ×10−4 7.908633 ×10−8

TABLE 5.1. Error in with Post-Widder approximation to L−1; n is the order of the
term, not the total number of terms used.

For most solutions, numerical evaluation of the Post-Widder formula is un-
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wieldy. For certain geometries, if the functional form is easily manipulable (po-

tentially using a computer algebra system), this method may be feasible. Other,

more sophisticated acceleration schemes may be utilized to further improve con-

vergence of this simple approach, in these situations.

The Post-Widder inverse is presented here to illustrate a method that capital-

izes on the analytic solutions that can sometimes be derived in Laplace space for

groundwater flow problems. This is an example of a benefit due to the elegance

that arises when working with analytic or semi-analytic solutions; a gridded nu-

merical method could also be posed in Laplace space, but it would be impossible

to compute derivatives (aside from finite difference approximations to the deriva-

tives) of the gridded solution with respect to the Laplace parameter.

5.3.2 Schapery

The method of Schapery (1962) is different from the other methods considered

here, since it only approximates the deviation of f(t) from a corresponding steady-

state solution. This obviously requires a steady solution, which does not always

exist (e.g., sin(t) has no steady value). It is typically easier to reformulate and solve

the Laplace equation, than to attempt to solve the modified Helmholtz equation

for t → ∞ (i.e., as p → 0). The deviation is expanded in terms of decaying ex-

ponential basis functions — a simple but potentially ill-posed approach (Lanczos,

1956, §4.23); the method is given as

f(t) = fs +
M∑
i=1

aie
−pit (5.7)

where the steady-state or reference solution fs is assumed to exist, and ai is a vector

of constants to be determined. Applying (A.1) to (5.7) gives

f̄(pj) =
fs
pj

+
M∑
i=1

ai
pi + pj

j = 1, 2, . . . ,M. (5.8)
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M values of pj are picked (typically a geometric series) which cover the “important

fluctuations” in f̄(p); after setting pi = pj the ai coefficients can be determined as

the solution to a matrix problem. Posing (5.8) as Pijai =
(
f̄(pj)− fs/pj

)
, the matrix

to invert becomes

Pij =


(p1 + p1)−1 (p1 + p2)−1 . . . (p1 + pM)−1

(p2 + p1)−1 (p2 + p2)−1 . . . (p2 + pM)−1

...
... . . . ...

(pM + p1)−1 (pM + p2)−1 . . . (pM + pM)−1

 (5.9)

The matrix Pij does not depend on f̄(p), so it only needs to be inverted once for a

choice of pj , with the resulting ai coming from a matrix-vector multiplication with

the calculated f̄(p) and fs.

This method also only requires real computation and historically has seen some

use (e.g. Liggett and Liu, 1983; Hemker and Maas, 1987), but has two main draw-

backs. It requires an additional steady-state or reference solution and no theory is

presented to indicate an optimal way to pick pj . A geometric series is suggested,

but Liggett and Liu (1983, p.177) note that some trial and error is required. This

method is briefly mentioned due to show its different approach and for historical

completeness.

5.3.3 Fourier series

The Fourier series approach for approximating (A.4) was initially made into a us-

able algorithm by Dubner and Abate (1968), it was first accelerated by Crump

(1976), and the method was further improved by de Hoog et al. (1982), among

others. There have been many different modifications and extensions to the basic

Fourier series approach, because it is a generally robust numerical inverse Laplace

transform method (Davies and Martin, 1979).

The method is based upon the connection between the Mellin integral and the

Fourier transform. Following Churchill (1972, §66), this begins by expanding (A.4)
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into real and imaginary parts (p = σ + iω, where σ is fixed), giving

Φ(t) =
eσt

2π

∫ σ0+i∞

σ0−i∞
eiωtΦ̄(σ + iω) dω. (5.10)

This complex contour integral along a contour parallel to the imaginary axis can

be broken into two real improper integrals,

Φ(t) =
eσt

2π

[∫ 0

−∞
eiωtΦ̄(σ + iω) dω +

∫ ∞
0

eiωtΦ̄(σ + iω) dω

]
. (5.11)

By the change of variables ω = −ω in the first integral, the two integrals can be

combined as

Φ(t) =
eσt

2π

∫ ∞
0

[
e−iωtΦ̄(σ − iω) + eiωtΦ̄(σ + iω)

]
dω, (5.12)

where the integrand is of the form [f(z)]∗ + f(z) = 2< [f(z)]. The two functions in

the integrand of (5.12) are conjugates of each other,
[
eiωtΦ̄(σ + iω)

]∗
= e−iωtΦ̄(σ −

iω), because Φ̄(p∗) = Φ̄∗(p), rather than the more general form
[
Φ̄(p)

]∗
= Φ̄∗(p∗)

(Milne-Thompson, 1996, §5.14). The simpler conjugation rule comes from conju-

gating both sides of (5.10); a real function of real argument equals its conjugate,

therefore the integrand must equal its conjugate (of conjugate argument). The in-

tegrand of (5.12) then becomes

2<
{

(cosωt+ i sinωt)
[
<
(
Φ̄
)

+ i=
(
Φ̄
)]}

; (5.13)

multiplying out all four terms in (5.13) and only keeping the real part puts (5.12)

into the form

Φ(t) =
eσt

π

∫ ∞
0

{
<
[
Φ̄(p)

]
cosωt−=

[
Φ̄(p)

]
sinωt

}
dω, (5.14)

which is a Fourier series approximation of the object function, Φ(t), in terms of

the image function Φ̄(p). As with most Fourier series approximations, the func-

tion can be expanded equivalently in terms of a Fourier sine, cosine, or complex
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exponential series. These three equivalent forms are

Φ(t) =
eσt

π

∫ ∞
0

<
[
Φ̄(p)

]
cosωt dω, (5.15)

= −e
σt

π

∫ ∞
0

=
[
Φ̄(p)

]
sinωt dω, (5.16)

=
eσt

π
<
(∫ ∞

0

eiωtΦ̄(σ + iω) dω

)
, (5.17)

where (5.15) is a Fourier cosine transform of the time-domain solution, (5.16) is a

Fourier sine transform and (5.17) is the real portion of a complex Fourier transform.

Although all 3 of these analytic representations of Φ(t) are equivalent (e.g.,

Dubner and Abate (1968) used (5.15), while de Hoog et al. (1982) used (5.17)), when

evaluating (5.14) numerically with the trapezoid rule, Durbin (1973) showed that

using (5.17) leads to the smallest discretization error. Wynn (1966) found that in

general it is profitable to utilize the complex exponential Fourier series form over

the simpler trigonometric form, when applying nonlinear series acceleration; we

simply discard the unneeded imaginary component at the end. The trapezoid rule

approximation to (5.17) is

Φ(t) =
eσt

T

2M∑′

k=0

<
[
Φ̄

(
σ +

iπk

T

)
exp

(
iπt

T

)]
, (5.18)

where T is a scaling parameter (often set to 2tmax) and the prime indicates that

the k = 0 and 2M terms in the summation are halved. The values of p required

for the method (the argument to Φ̄) do not functionally depend on the time being

inverted. Equation 5.18 is the non-accelerated Fourier series inverse algorithm,

and is of little practical use in this form, requiring thousands of evaluations of Φ̄(p)

for many types of functions (Crump, 1976); there are several methods to accelerate

this summation.

Richardson extrapolation can be used to estimate the limit as the integration

step size → 0, one way of accelerating the convergence of (5.18). This technique
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is often referred to as Romberg integration (e.g. Antia, 2002, §6.2); it is very effec-

tive for smooth functions with bounded derivatives. Here we are guaranteed this,

based on the definition of the Laplace transform; all singularities are left of the

Bromwich contour.

The ε-algorithm of Wynn (1966) can be used to increase convergence of the

trapezoid rule (5.18); this was the approach taken by Crump (1976) in the first

accelerated form of this method, and is illustrated by Antia (2002, §9.8). In their

widely-used version of this method, de Hoog et al. (1982) utilized a Padé approx-

imation (rational polynomials) with an analytic expression for the remainder of

the truncated series (which they termed double-acceleration). Homeier (1993) de-

veloped a more generalized non-linear transformation which performs better than

the ε-algorithm, but is more unstable near singularities. Oleksy (1996) developed

an initial transformation using trigonometric identities, which is applied before

acceleration and leads to increased convergence near singularities. Sakurai (2004)

applied a variant of Euler summation to (5.18) to optimally accelerate the Fourier

series solution in the presence of singularities.

Any of these acceleration methods can be used to make the Fourier series ap-

proach a robust and efficient numerical inversion method for most Φ(t), but the

non-linear acceleration can cause numerical dispersion in some convective prob-

lems. Morales-Casique and Neuman (2008) describe difficulties in reproducing

pure advection, caused by the non-linear acceleration of Gibbs’ phenomena near

sharp fronts. Brio et al. (2005) feel this shortcoming of the otherwise very robust

Fourier series approach is reason enough to use the Möbius-based methods, which

do not use or benefit from non-linear acceleration. For diffusion problems, non-

linear acceleration does not pose such a great threat.
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5.3.4 Möbius mapping

The numerical inverse transform algorithms based upon the Möbius transform fall

into the category of methods which expand the image function in terms of basis

functions that have analytic inverse transforms. Several different versions of this

approach (using Legendre, Chebyshev, and Laguerre polynomials) are discussed

in an early book by Lanczos (1956, §4.23–31); we discuss here the two most suc-

cessful of these, in their modern implementations.

Since, by definition, the image function is analytic in the right half of the p-

plane (see shaded area in left portion of Figure 5.2), the Möbius (i.e., bilinear)

transform can advantageously be used to map this region into the unit circle (see

Strack, 1989, §30; Needham, 1997, §3); following the convention of Davies (2002,

§19), this is given as

z =
p− a− b
p− a+ b

, a > σ0, b > 0, (5.19)

where z is the mapped complex variable and a and b are auxiliary parameters. The

plane <(p) > a 7→ |z| ≤ 1 , with the line <(p) = a 7→ |z| = 1 (see dotted line A in

Figure 5.2) and the real line (0 < <(p) <∞, =(p) = 0) is mapped to the diameter of

the circle, −1 < <(z) < 1, =(z) = 0 (see dashed line B Figure 5.2). As is evident in

the Möbius inverse transform,

p− a+ b =
2b

1− z
, (5.20)

the point p = ∞ is mapped to z = +1, requiring all image functions to be an-

alytic as a function of 1/p at infinity, to ensure convergence at this point on the

circumference of the unit circle.

The inversion algorithms attributed to Weeks (1966) and Piessens (1972) use

this approach, largely the same but utilizing different basis functions. The Weeks

method uses Laguerre polynomials for complex z (on the unit circle, A), while
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FIGURE 5.2. Möbius transformation between p (left) and z planes (right)

Piessen’s method uses Chebyshev polynomials for real z (on the diameter of the

unit circle, B). These methods are similar, and share a common theoretical frame-

work (though they were developed independently). Both methods expand the

mapped image function Φ̄(p) in basis functions that have analytic inverse trans-

forms, allowing more rigorous error analysis and very different convergence prop-

erties than the Fourier series approach.

When the singularities of Φ̄(p) are known, a and b can be chosen to allow any

values of Φ(t) to be computed from a single set of image function evaluations.

Unfortunately, due to the mapping, the Möbius methods are quite sensitive to the

values of the auxiliary parameters (a and b), sometimes completely diverging for

non-optimal parameter values. Despite these shortcomings, these methods are a

potentially useful alternative in some LT-AEM applications, especially simulation

of advection. This approach would be useful where interest lies only in one type

of element and time behavior, and therefore we can afford to make an in-depth

analysis of the optimum a and b values.

Weeks method The time-domain solution, using Weeks’ basis functions is

Φ(t) = e(a−b)t
N∑
n=0

anLn(2bt), (5.21)
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where Ln(x) is an nth order Laguerre polynomial (e.g. Andrews, 1998, §5.3) and an

are coefficients to determine. The Laplace transform of (5.21), in terms of z, is

L [Φ(t)] = Φ̄(p) =

(
1− z

2b

) N∑
n=0

anz
n, (5.22)

which is a power series expansion of the image function (the mapped image func-

tion is guaranteed to be analytic inside the unit circle). The simple form of (5.22) is

what has lead many to call the Weeks algorithm the most “natural” inverse trans-

form method (Davies, 2002). The coefficients can be determined from integrating

Φ̄(z) on the unit circle using the midpoint rule (designed to not sample the point

z = 1, which corresponds to p =∞),

an =
1

M

M∑
j=1

Ψ
(
e2iθj−1/2

)
e−2inθj−1/2 (5.23)

where θk = kπ/M . The function Ψ(z) is the conformally-mapped image function;

it is given by

Ψ(z) =
b

1− z
Φ̄

(
2b

1− z
+ a− b

)
. (5.24)

Weeks originally suggested that a = 1/tmax and b = 2N/tmax, where tmax is the

maximum time needed to be transformed. While the values of p required by Φ̄(p)

do not functionally depend on the time being inverted, the optimal parameter val-

ues do. Without information about the location of singularities in Φ̄(p) (7→ |z| > 1)

the most successful optimization is a 2-parameter search in the Laplace plane; this

requires many evaluations of Φ̄(p). Weideman (1999) proposes some optimization

schemes for determining parameter values for a given problem, but his techniques

are quite expensive, often requiring hundreds of evaluations of Φ̄(p) to estimate

optimum parameters.
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Chebyshev method Since the method is similar to Weeks’ method, the discussion

here is minimal. The time domain solution is given as

Φ(t) = e(a−b)t
N−1∑′

n=0

an 2F2(−n, n; 1
2
, 1; bt) (5.25)

where 2F2 is a generalized hypergeometric function (e.g. Andrews, 1998, §11),

which for the given argument and parameters is just a polynomial. The Laplace

transform of (5.25) is

Φ(p+ a− b) =
1

p

N−1∑′

n=0

anTn

(
1− 2b

p

)
, (5.26)

where Tn(x) is an nth-order Chebyshev polynomial (e.g. Andrews, 1998, §5.4.2).

The coefficients are evaluated using Chebyshev quadrature along the line −1 <

z < 1, resulting in

an =
2

N

N−1∑
k=0

Ψ

(
cos

π(k + 1/2)

N

)
cos

nπ(k + 1/2)

N
, (5.27)

with Ψ(z) defined in (5.24).

Recurrence relationships for functions For both Möbius methods, the basis functions

are most stably computed from recurrence relationships, as severe cancellation oc-

curs when evaluating them directly from their published definitions for large n.

Davies (2002, §19) gives general stable expressions for these functions; they are

listed here in a simplified form. The two-term recurrence relationship for the La-

guerre polynomials (required in (5.21)) is

nLn(x) = (2n− 1− x)Ln−1(x)− (n− 1)Ln−2(x) n = 3, 4, 5, . . . (5.28)

The stable three-term recurrence relationship for the generalized hypergeometric

functions (required in (5.25)), listed briefly as φn(x), is

φn(x) = (An +Bnx)φn−1 + (Cn +Dnx)φn−2 + Enφn−3 n = 4, 5, 6, . . . (5.29)
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which is completed using the following simplified expressions for An–En

An =
3n2 − 8n+ 3

(n− 2)n
Bn =− 4

n
Cn =− 3n2 − 10n+ 6

(n− 2)n
(5.30)

Dn =− 4(n− 1)

(n− 2)n
En =− (n− 1)(3− n)

(n− 2)n

with the recurrence relationships seeded using the first few values of n, given in

Table 5.2.

n Ln(x) 2F2(−n, n; 1
2
, 1, x)

0 1 1
1 1− x 1− 2x

2 1− 2x+ x2

2
1− 8x+ 4x2

3 1− 3x+ 3
2
x2 − x3

6
1− 18x+ 24x2 − 16x3

3

4 1− 4x+ 3x2 − 2
3
x3 + x4

24
1− 32x+ 80x2 − 128x3

3
+ 16x4

3

TABLE 5.2. Basis functions for Möbius mapping methods
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Chapter 6

LT-AEM INVERSE APPLICATIONS

This chapter is comprised of two LT-AEM inverse-modeling applications. The first

uses the parameter estimation code PEST (Doherty, 2007) to estimate aquifer prop-

erties using data from one of several unpublished aquifer tests conducted at a field

site in Boise, Idaho (Barrash et al., 2006). In the first of three LT-AEM models used

to interpret the tests, aquifer parameters are assumed homogeneous; using PEST,

the model parameters were adjusted to best fit the observed head. After introduc-

ing two circular regions of different aquifer parameters, the model is re-calibrated

to better fit drawdown at two observation wells. For comparison, the first homo-

geneous model with a confined governing equation is used to illustrate the effects

the unconfined behavior have on the solution.

The second inverse modeling application is a synthetic forward model that uses

a Markov chain Monte Carlo inverse method (Vrugt et al., 2003b) to estimate the

location of 4 circular elements with K different from the background, when the

aquifer parameters are assumed known.

6.1 Boise aquifer test

The aquifer test was performed in a shallow unconfined aquifer (Figure 6.1, see

Barrash et al. (2006) for photomap of field site). The test was a dipole of two wells

(well C5 pumping on the west side of the group, well C2 injecting on the east

side) for a pumping duration of 280 minutes, with 200 minutes of recovery. The

pumping rate was approximately 4.3 L/sec (68 gpm) throughout the test for both

pumping and injection. Observations were made at 13 monitoring wells and the

two pumping/injection wells using pressure transducers and a datalogger. Well
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coordinates are given in Table 6.1; all wells are assumed to fully penetrate the 5 m

thick unconfined aquifer.
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FIGURE 6.1. Boise Hydrogeophysics Research Site well locations; see Barrash et al.
(2006) for photomap of site.

6.1.1 LT-AEM model

Due to an apparently irregular initial head surface at the beginning of the test, the

analysis was performed using drawdown from a baseline condition, averaged over

observations made during the hour before pumping began. It was observed that

the data recover to a common non-zero level of drawdown; Barrash et al. (2006)

indicates the trees surrounding the site have an observable evapotranspiration sig-

nal, varying sinusoidally by a few millimeters, with a period of 24 hours.

The observed drawdown was reproduced using a solution with an unconfined

source term (see model in §4.2.3). Drawdown observed in the pumping and in-

jection wells was observed to be influenced by a skin effect (Barrash et al., 2006),

which only affects those observations made in the pumping/injection wells. We

circumscribed two circular matching elements around a point pumping well to
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well x [m] y [m]
A1 0.00 0.00
B1 -0.27 2.92
B2 2.94 1.94
B3 3.72 -1.92
B4 0.23 -2.64
B5 -3.08 -1.89
B6 -2.38 1.30
C1 3.26 6.59
C2 8.14 0.52
C3 3.82 -6.01
C4 -4.33 -8.72
C5 -9.13 -0.26
C6 -4.56 7.01
X2 30.02 -1.28
X4 -13.12 -17.78

TABLE 6.1. BHRS well locations

simulate the effects of wellbore storage a skin effect. The inner 10.2 cm-diameter

circle (corresponding to the diameter of the well casing), was assigned a unit spe-

cific storage SS = 1 and very large permeability (K = 250 cm/sec), while the outer

circle has a 12.7 cm diameter. The annulus between the two circles was assigned

a very low specific storage (i.e., approximately steady-state – common in wellbore

skin solutions); its permeability was a free parameter.

The parameters that were estimated from the data included aquifer properties

for the homogeneous domain, K, Ss, Kz, Sy, and the permeability of the skin at

both the pumping and injection well.

6.1.2 Homogeneous model results

As a first estimate, a homogeneous LT-AEM model was used to fit the observed

head data. Barrash et al. (2006) have characterized the site as being relatively ho-

mogeneous, based on single-well pumping tests. Two of the observation wells

(X2 and X4) did not fit particularly well at intermediate time (see Figure 6.4), po-
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FIGURE 6.2. LT-AEM model (lines) and observed data (points) for observation
group 1

tentially due to some heterogeneity or anisotropy in the domain, which is not ex-

plained by the homogeneous LT-AEM model used here. The aquifer properties

95% confidence interval
parameter units estimated lower limit upper limit

K cm/sec 4.844 4.828 4.860
Ss – 0.002688 0.002497 0.002893
Sy – 0.07317 0.07287 0.07346
Kz cm/sec 0.03341 0.03185 0.03504

K
pump
skin cm/sec 0.02964 0.02956 0.02972
K

inj
skin cm/sec 0.1264 0.1142 0.1398

TABLE 6.2. Results of parameter estimation for homogeneous model

estimate here are physically reasonable for an unconsolidated fluvial deposit, as is

observed at the Boise site.
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6.1.3 Inhomogeneous model results

Two circular inhomogeneities were introduced, each surrounding one of the wells

X2 or X4 (see Figure 6.6), where the unconfined aquifer properties (Kz and Sy) were

allowed to vary independently from those in the background aquifer (the confined

aquifer properties were kept constant everywhere). A second set of parameters

was then estimated using PEST and the same observations, based on the results of

some preliminary “hand calibration” testing. The (xc, yc) locations of the centers

of the two circles (−15m, 25m), (42m,−6m) and radii of the two circles (17m each)

were not included in the estimation process. The Kz in the circular regions was

estimated to be about two orders of magnitude lower than the background (see Ta-

ble 6.3), which was found to have the largest effect on fitting the intermediate-time

observations at wells X2 and X4 (compare the fit in Figures 6.4 and 6.7; the plots

for the other observation wells were not repeated as they are largely unaffected by
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95% confidence interval
parameter units estimated lower limit upper limit

K cm/sec 5.068 5.042 5.093
Ss – 0.002061 0.0018467 0.002301
Sy – 0.07317 0.07288 0.07346
Kz cm/sec 0.03837 0.03709 0.03969
KX2
z cm/sec 0.0009003 0.0001038 0.007812

KX4
z cm/sec 0.0003497 3.905×10−5 0.003132

SX2
y cm/sec 1.060×10−7 2.343×10−8 4.796×10−7

SX4
y cm/sec 1.542×10−6 3.429×10−7 6.935×10−6

TABLE 6.3. Results of parameter estimation for inhomogeneous model

the two circular inhomogeneities). Decreasing Kz, while maintaining the aquifer

thickness, has the effect of decreasing β in Figure 4.9. Smaller β values correspond

to models that predict results with increased drawdown at intermediate times;

this behavior is like that observed at wells X2 and X4 in Figure 6.4 for the homoge-

neous solution. The Sy estimated for the two circular regions was estimated to be
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FIGURE 6.5. LT-AEM model (lines) and observed data (points) for pumping and
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un-physically small (smaller than confined storage). This in combination with the

low Kz values points to the explanation that the aquifer is behaving more confined

(essentially no delayed yield) near these wells. This might be attributed to some

clay layers near the top of the aquifer, but without field observations this is pure

speculation. The aquifer properties for the rest of the aquifer were estimated to be

approximately the same as for the homogeneous case, because the fit of the model

to the data elsewhere was good

6.1.4 Unconfined vs confined

As an exercise, the original homogeneous results given in the previous section

were recomputed with only a confined model (no Sy and Kz) for comparison.

Comparing the results in Figures 6.8–6.11 to those for the unconfined case in

Figures 6.2–6.5, it is clear that the unconfined behavior is required to reproduce
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the “two-hump” behavior observed in many of the observation wells (especially

wells B2 and B3 in Figure 6.8). The early-time and late-time data match the con-

fined model well, but the intermediate-time data clearly do not. The matches at the

pumping wells (see Figure 6.11) only show slight deviations from the data, illus-

trating that the wellbore storage and skin effects have a larger observable impact

on drawdown there than the delayed yield from the aquifer.

Interestingly, wells X2 and X4 (see Figure 6.10), that were determined in the pre-

vious section to have very small delayed yield in the circular regions surrounding

the wells, do not fit well with the “confined everywhere” model presented here.

Unconfined effects are visible in the data, but not to the same extent as seen in the

other wells. One possible manner to explain this observed difference is through

heterogeneous distribution of unconfined properties.

LT-AEM can be used to first match an aquifer test or similar data set using a ho-

mogeneous solution with only a few parameters, similar to an analytic solution. If

desired, more complexity can be added by introducing regions of different aquifer

properties or source terms. This allows flexibility not commonly found in a tran-
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sient analytic solution, without requiring the hydrologist to switch from the first

simple solution to a more flexible (but completely different) gridded flow model.
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6.2 Synthetic inverse problem

A synthetic problem was created to facilitate the exploration of different possible

avenues for inverse modeling with LT-AEM, compared to the more traditional use

of PEST in the previous section. In this synthetic inverse problem it is assumed

we know the aquifer properties of the background and circular elements, but the

location of the circular elements is unknown. Tiedman et al. (1995) studied an

analogous synthetic problem related to steady-state flow in the presence of discrete

high permeability fracture zones, using a BEM forward model.

6.2.1 Synthetic problem description

Heads were sampled through time at 9 observation locations (stars in Figure 6.12),

then corrupted with unbiased Gaussian noise (σ = 0.0025); the input data for the

inverse model are plotted in Figure 6.13. The LT-AEM model was fit to the data

using the Markov chain Monte Carlo inverse model SCEM-UA (Vrugt et al., 2003b)

to estimate the location of the 4 circular elements. Each of the 4 circular elements

have the same Kc = 100Kbg but different known radii; SS is uniform across the

background and all 4 circular elements.

6.2.2 SCEM inverse approach

The shuffled complex evolution Metropolis algorithm (SCEM-UA) takes a different

approach compared to search-based inverse methods (e.g., PEST); its goal is to

estimate the probability density associated with the parameters of the model (from

which the optimum parameters can be obtained). SCEM does not require an initial

parameter guess, only ranges over which the parameters will be sampled and an

initial distribution to sample them from.

There were 8 total parameters to estimate; x- and y-coordinates for each of the

4 the circle centers. SCEM was provided with ranges −5 ≤ x ≤ 5 and −5 ≤ y ≤ 5,
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along with a uniform probability distribution (essentially non-informative prior

information). SCEM begins with an initial sampling phase (here 10,000 iterations),

where the whole 8-dimensional parameter space is sampled to develop an initial

estimate of the multi-dimensional density function associated with the parame-

ters. After the sampling phase, the parameters are refined until the total number

of forward model runs are completed (here 50,000). Figures 6.14–6.17 show the pa-

rameter estimates for iterations 10,001 through 50,000 (i.e., not including the initial

sampling phase) as an image with the scaled a posteriori density function associated

with the 4 element locations.
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6.2.3 SCEM results

In this synthetic example there were four circular elements, each with a distinct

radius (r1 = 0.3, r2 = 0.5, r3 = 0.4, r4 = 0.6) and a common known hydraulic

conductivity. The results are shown as relative density in Figures 6.14–6.17 for

the location of each circle independently. Each image illustrates the probability

distribution associated with 2 parameters, the x and y location of the center of the

circle (and the radius associated with that circle as well).

Using only 4 observation locations, either in the arrangement shown in Fig-

ure 6.14 or that rotated by π/4 in Figure 6.15, the parameters were not determined

correctly or uniquely. The arrows indicate where each predicted circle should ac-

tually be located, diffuse areas of gray indicate a poorly-defined solution, while

distinct black circles indicate a well-defined solution. It is clear that just because

the SCEM inverse model locates a circle with great certainty, it can be incorrect,

due to a lack of adequate information in the observed drawdown.

Using 8 observation locations (the first two groups of observations used to-

gether), the inverse model successfully locates circle 2 and circle 4, see Figure 6.16.
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FIGURE 6.14. SCEM results showing true circle locations, SCEM-estimated loca-
tions and 4 observation points (stars). Grayscale image represents scaled density,
black is highest probability.

Circle 1 is located incorrectly, and with low certainty (see the two gray circles in the

upper right). The poor performance with respect to circle 3 could be attributed to

the fact that none of the observation locations are very close to the true location of
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FIGURE 6.15. SCEM results showing true circle locations, SCEM-estimated loca-
tions and 4 alternate observation points (stars). Grayscale image represents scaled
density, black is highest probability.

this circle. Circle 1 is the smallest of the 4, and therefore makes the smallest impact

on the observed drawdown, likely leading to its mis-placement.

Finally, using 16 observations (an entirely different group of observations, with
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FIGURE 6.16. SCEM results showing true circle locations, SCEM-estimated loca-
tions and 8 observation points (stars). Grayscale image represents scaled density,
black is highest probability.

no overlap with the previous figures), SCEM locates all of the circles correctly with

great certainty, see Figure 6.17. With this arrangement of observation locations,

each true circle location is either surrounded by observations points or one of the
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FIGURE 6.17. SCEM results showing true circle locations, SCEM-estimated loca-
tions and 16 observation points (stars). Grayscale image represents scaled density,
black is highest probability.

observation points falls within the circle.

Qualitative comparisons We investigated the effects of more or less data noise, obser-

vations over fewer or more logcycles of time, more or less contrast in the elements
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compared to the background, and more or less observation locations on the ability

of SCEM-UA to correctly locate the circles. Using only early time data (50 observa-

tions over 2 rather than 4 logcycles of time) resulted in a very poor fit, with at best

only one of the circles being located at all. The results with un-corrupted data are

better, as would be expected; likewise, more noise (σ = 0.1) lead to poorer results

than those shown here.

SCEM applications SCEM has seen numerous applications in surface water (Vrugt

et al., 2003a), and soil geophysical (Heimovaara et al., 2004; Huisman et al., 2004)

models where the forward models are simple and efficient and they can easily be

run many thousands of times. LT-AEM is efficient enough (each forward model

run used here took < 4 seconds) that semi-analytic transient solutions for non-

homogeneous groundwater flow problems can also be solved using the Markov

chain Monte Carlo approach.

This example was performed to illustrate a different approach to the inverse

problem compared to gridded forward models. In most forward models the model

grid is assumed a priori, but the parameters are allowed to vary in some man-

ner across the domain. The difference between using a fixed simulation grid and

“moving” elements could be likened to the difference between Eulerian and La-

grangian coordinates. Analytic models of subsurface flow would be well-suited

to Monte Carlo parameter estimation techniques, except they usually do not have

many degrees of freedom and cannot simulate flow problems of general interest.

LT-AEM allows the efficient and elegant analytic solution to be applied to more

general geometries and transient behaviors.
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Chapter 7

CONCLUSIONS

The Laplace transform analytic element method (LT-AEM) lies somewhere be-

tween analytic solutions and gridded models in both flexibility and accuracy; it

provides much of the elegance of analytic solutions to a broader set of geometries.

The use of the Laplace transform gives flexible analytic temporal behavior, while

retaining the benefits of the analytic element method (AEM).

LT-AEM and AEM Although conceptually LT-AEM is an application of AEM

to (2.3), operationally, the methods are quite different in several key ways. Since

the modified Helmholtz equation (2.3) contains the Laplace parameter p which

generally takes on complex values during numerical Laplace transform (LT) in-

version (see Appendix A), the differential equations have complex arguments or

parameters. Although some numerical inverse LT algorithms only require real val-

ues of p (see Chapter 5), they are usually less successful at inverting general time

behaviors (Davies, 2002), unless the calculations are performed using arbitrary pre-

cision (Abate and Valkò, 2003).

Steady AEM solves Laplace’s equation, ∇2Φ = 0, where the aquifer properties

do not appear directly in the governing equation (only in the definition of dis-

charge potential, Φ), thus allowing direct superposition of solutions across regions

of different aquifer properties. Helmholtz’s equation does not allow this simpli-

fication since κ2 = pSs/K appears in the governing flow equation, therefore the

approach given in section 2.5 must be used, unless aquifer properties and source

terms are uniform everywhere.

Steady 2D AEM often utilizes complex potential formulation, Ω = Φ + iΨ

(where Ψ is a streamfunction). In LT-AEM both Φ̄ and Ψ̄ are themselves complex
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due to p, hence this convention is not applicable. If a numerical inverse Laplace

transform algorithm requiring only real p were used, expressions for the conjugate

potentials (analogous to the Cauchy-Riemann equations for Laplace’s equation)

can be utilized (Duffin, 1971). Conformal mapping (Strack, 1989, §29–33) is a com-

monly used AEM technique for extending solutions of ∇2Ω = 0 to new geome-

tries. Although potentially applicable to the Helmholtz equation (Schinzinger and

Laura, 2003, §5.7), the method loses its elegance, compared to Laplace’s equation,

due to the appearance of extra terms (the original and mapped functions do not

satisfy the same governing equation).

For steady flow the streamfunction Ψ coincides with particle traces, but in tran-

sient problems streamlines and particle pathlines are generally different and the

transient problem requires a time integration to compute pathlines.

For steady 2D AEM, an important distinction is made between elements which

have an effect at “infinity” (e.g., the 2D Green’s function − ln(r)) and those which

do not (e.g., circular elements
∑∞

n=0 r
−n(an cosnθ + bn sinnθ)), corresponding to

functions of Ω with and without a branch cut (Strack, 1989). LT-AEM elements are

either bounded or derived assuming no effect at ∞, which simplifies derivation

and implementation. In the limit as t → ∞ and therefore p → 0 (reducing (2.3)

to Laplace’s equation), these elements would have effects at infinite distance, but

only in this limit. Therefore, in LT-AEM there are no branch cuts to consider or far-

field fixed heads that must be set to obtain a solution, as are required for several

common elements in 2D steady-state AEM.

Lastly, as discussed in Chapter 4, LT-AEM can handle certain distributed source

terms more easily than methods derived for ∇2Φ = 0, since the effects of transient

storage can itself be considered a source term in (2.3). The LT-AEM solution tech-

niques given here can readily be used to solve governing equations with additional

source terms, higher order time derivatives or convolution integrals. Leakance and

transient effects must be dealt with approximately (Strack, 2006) or using inflexi-
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ble area sources (Zaadnoordijk and Strack, 1993) in traditional AEM for the Laplace

equation, but are handled simply and precisely in LT-AEM.

LT-AEM theory We extended the introductory LT-AEM work of Furman and

Neuman (2003) under a more general light and introduced additional circular ele-

ments which illustrate the usefulness of LT-AEM to aquifer test interpretation. The

save approach was used for elliptical LT-AEM elements, which are the most gen-

eral 2D coordinate system where the modified Helmholtz equation can be solved

via eigenfunction expansion (EE). For a few geometries eigenfunction expansion is

an powerful and elegant method for deriving LT-AEM elements. Two limitations

of the EE approach have been encountered in this work; first the effort associated

with calculation and implementation of the special functions that arise, often for

complex argument or parameter. Secondly, the geometries associated with EE are

limited; creating elements from intersecting elements (e.g., a “cluster of grapes”

element that is the union of several circular elements) leads to some significant

convergence issues. These issues were noticed by Janković (1997) for steady circu-

lar elements.

More general geometries can be approached using numerical approximation

techniques borrowed from BEM, traditional AEM, and the spectral element litera-

ture. As noted in the discussion on 3D EE (§3.4), due to the very involved special

functions that arise as solutions to the differential equations in some geometries,

these approximate approaches may be more appropriate.

The LT-AEM methodology (EE + numerical inverse Laplace transform) was

used to solve the leaky, unconfined, multi-layer, and damped-wave flow prob-

lems. These exemplify how LT-AEM can be extended to more general aquifer test

analysis scenarios; dual porosity may be similar handled. Analyzing transient

multi-source aquifer tests including inhomogeneities, finite leaky layers, nearby

boundaries and rivers would previously have been done using a finite difference
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or finite element model, but now they can be addressed with the LT-AEM.

Gibbs’ phenomena (§D.2.3) arise when we truncate a Fourier series (or gener-

alized Fourier series). For LT-AEM these can manifest themselves in two inde-

pendent ways. When utilizing the Fourier series approach to the numerical in-

verse Laplace transform (§5.3.3) the inverted solution will have “wiggles” in time,

due to incomplete resolution of the image function with the defining Fourier se-

ries. The EE approach taken by here for the LT-AEM also can suffer from Gibbs’

phenomena in space, when a discontinuous or singular boundary condition is ex-

panded. These two expressions of Gibbs’ phenomena are independent; temporal

fluctuations tend to manifest themselves across the portion of space effected by the

temporally-variable element, and spatial fluctuations tend to manifest at all times

(especially early and late where p takes on extreme values).

Elegance The elegance of both the AEM and LT-AEM have been mentioned at

several points in the previous discussions. An analytic solution can be considered

elegant because it concisely embodies one or more relationships about the process

being modeled. Some understanding can be gleaned without actually computing

a numerical solution. In steady AEM the elements themselves are analytic solu-

tions, therefore carrying over much of this elegance to the method. The numerical

boundary matching step, used to compute the coefficients of active elements, could

be said to weaken the elegance of the overall result. The resulting AEM solution is

very accurate and resembles an analytic solution, but the flexibility of the boundary

matching approach is in some part exchanged for elegance in the final solution.

Extending this to the LT-AEM, which additionally utilizes a numerical inverse

Laplace transform on top AEM boundary matching, the elegance could be consid-

ered to be even further degraded. This further loss of elegance is traded for the

temporal flexibility that the numerical inverse transform gives the problem. As

discussed in section 2.6.2, the coefficients can be found analytically for some very
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special geometries. These analytic expressions, though limited, increase the ele-

gance and diagnostic capacity of the method. To obtain a truly analytic solution for

LT-AEM, these coefficients would also need to have analytic inverse Laplace trans-

forms (i.e., closed form expressions for the solution depending only on aquifer pa-

rameters and geometry). When possible, this approach is essentially deriving an

analytic solution from an LT-AEM solution.

The AEM or LT-AEM will therefore never have all the elegance of an analytic

solution, but the flexibility obtained in exchange for this can be considered a fair

trade. These methods do produce solutions that have the appearance of an analytic

solution, which can be argued is a form of elegance in itself.

Examples The examples given throughout Chapters 3 and 4, as well as the in-

verse applications in Chapter 6 illustrate the potential usefulness of LT-AEM for

interpreting aquifer tests; delivering a flexibility not found in standard analytic

aquifer flow solutions, and an accuracy and elegance greater than that found in

gridded numerical approaches. The flexibility and applicability of LT-AEM can

be increase through extension of LT-AEM to 3D flow, elements with anisotropic K,

the inclusion of transient particle tracking, the addition of more aquifer test related

elements (e.g., elements with wellbore storage or a skin layer), and the addition of

approximate elements.

While the nomenclature and examples used here are specific to hydrogeol-

ogy, LT-AEM would be useful for the solution of heat conduction, neutron scat-

tering and other diffusion-dominated processes. The extension to the damped-

wave problem also shows that LT-AEM has the ability to solve additional prob-

lems which can be transformed into the modified Helmholtz equation using the

Laplace transform, which includes other non-diffusion processes.
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Future directions The most obvious extension of 2D LT-AEM is to three dimen-

sions. Using the EE approach given here, there are several coordinate systems that

would produce useful and tractable results (spherical, spheroidal, and cylindrical).

Other approaches, analogous to those used in steady AEM and BEM, including

Green’s function integration and Chebyshev function approximation, could also

be used to develop additional elements, for geometries where the EE approach is

not feasible.

Another possible LT-AEM extension would be the solution of transport prob-

lems. A particle tracing or method of characteristics approach could be taken,

using the results from the existing LT-AEM in its present form. The LT-AEM ap-

proach might also be applied to solve the governing advection dispersion equation

in Laplace space, although this does not result in the modified Helmholtz equa-

tion considered here without significantly restricting simplifications (e.g., unidi-

rectional flow allowing non-linear transformations analogous to those used in Ap-

pendix F).

The LT-AEM could be coupled with gridded numerical approaches (e.g., finite

elements or finite difference), to quite naturally supply external boundary condi-

tions. Since the analytic solutions used as elements in LT-AEM readily extend to

infinity, this could be coupled with a local and potentially non-linear gridded flow

or transport model, taking advantage of the strengths of each approach.
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Appendix A

LAPLACE TRANSFORM

A.1 Forward transform

The Laplace transform of a function of space and time, f(x, t), is defined for t ≥ 0

as

L{f(x, t)} = f̄(x, p) =

∫ ∞
0

f(x, t)e−pt dt, (A.1)

where p is the generally complex Laplace parameter, and the over-bar indicates a

transformed time-dependent variable. The transformed function, f̄(x, p), is called

the image of the object function, f(x, t).

Time, represented by the real variable 0 ≤ t <∞, is transformed into a param-

eter p with <(p) > 0; valid for the right half of the complex plane. Theoretically,

each value of t is related to the entire complex p plane, except at very small and

very large times, where the two are inversely related.

A brief list of useful pairs of image and object functions are given in Table A.2;

many more transform pairs can be found in reference books, the most modern and

comprehensive being Prudnikov et al. (1992).

The region of convergence for both (A.1) and the image function is illustrated

in Figure A.1 as the gray region extending to the right of the dashed line, the axis of

convergence. The axis is specified by σ0, the abscissa of convergence (Lepage, 1980,

§10.4). The abscissa of convergence is important in numerical Laplace transform

inversion routines, as all singularities in the image function lie to the left of it.

A few example values are given in Table A.1, which indicates where the image

functions relating to these object functions have their rightmost singularities.
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FIGURE A.1. Region of convergence of Laplace image function in p-plane

f(t) σ0

ekt k
sin t 0

1 0
e−kt −k

1−H(t− 1) −∞

TABLE A.1. Abscissa of convergence for simple time functions

A.1.1 Two-sided Laplace transform

Two standard (one-sided) Laplace transforms can be connected to form the bilat-

eral or two-sided Laplace transform (Poularikas, 1996, §5.8)

L2 [f(x, t)] =

∫ ∞
−∞

f(x, t)e−pt dt =

∫ ∞
0

f(x, t)e−pt dt+

∫ ∞
0

f(x,−t)ept dt, (A.2)

where this integral converges if both one-sided Laplace transforms converge. The

argument of the second integral is folded with respect to the integration variable,

flipping the sense of the convergence (it now converges to the left of its abscissa

of convergence). The overlapping region of convergence for the two integrals is

illustrated in Figure A.2; the standard Laplace integral (on the left in (A.2)) has its

convergence region to the right (associated with σ01), while the folded Laplace in-

tegral (on the right of (A.2)) converges on the left of the p-domain (associated with

σ02). The overlap region (cross-hatched in Figure A.2) is the region of convergence

for the dual-sided Laplace transform.
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FIGURE A.2. Regions of convergence for dual-sided Laplace transform in p-plane

A.1.2 Fourier transform

The two-sided Laplace transform and its region of convergence can be related to

the Fourier transform (Churchill, 1972, §131), defined by

F (ω) =

∫ ∞
−∞

f(x)e−2πixω dω, (A.3)

when p = 2πix (the factor i is related to the rotation of one region of convergence

with respect to the other – compare Figures A.2 and A.3). The domain of con-

vergence for the Fourier transform is also related to the singularities of the image

function; Figure A.3 shows it is a strip along the real axis in the ω-plane. Boyd

(2000, §2.10) heuristically proves how the width of the region of convergence, ρ0, is

related to the convergence of the analogous Fourier series. Section D.2 illustrates

how the convergence of a Fourier series is degraded by discontinuities in the func-

tion or its derivatives. With the Fourier transform, an object function with discon-

tinuities or discontinuous derivatives has a vanishingly small strip of convergence

ρ0 → 0; a function must be infinitely smooth for ρ0 →∞.

This comparison between Fourier and Laplace transforms mathematically il-

lustrates why using the Laplace transform is superior to using a Fourier transform

in time (as was done by Bakker (2004c)). First, the one-sided Laplace transform is

able to handle discontinuous time functions. This improved ability comes about

partially because of the increased region of convergence of the object function, al-
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FIGURE A.3. Region of convergence for Fourier transform in ω-plane

lowing different methods for inverting the object function (e.g., the different meth-

ods of numerical Laplace transform inversion discussed in Chapter 5). Secondly,

when the Laplace transform is modified to handle both positive and negative time

(A.2), its domain of convergence is greatly restricted (similar to the Fourier trans-

form). With the hydrologic problems dealt with here, defining the problem for

t ≥ 0 only is an advantage, leading to better convergence of the resulting solution.

A.2 Inverse transform

The inverse LT is defined as the Mellin contour integral (McLachlan, 1953, §8),

which can be derived from the Fourier transform, is given as

L−1
{
f̄(x, p)

}
= f(x, t) =

1

i2π

∫ σ0+i∞

σ0−i∞
f̄(x, p)ept dp. (A.4)

A common strategy for evaluating this integral is to deform the contour into a large

half circle of radius R→∞ (the Bromwich contour), enclosing all the singularities

(Churchill, 1972, §71–74). If the singularities of the image function are poles, the

solution can be found using the method of residues; if any of the singularities are

branch points, the Bromwich contour must be deformed to accommodate them.

The strategy and details behind the evaluation of (A.4), for problems arising in

hydrology applications, are found in Lee (1999, §3.2).

It is difficult to come up with both necessary and sufficient conditions that en-

sure any arbitrary f̄(x, p) has a corresponding physical f(x, t) (Lepage, 1980, §12.8).

A criteria that is appropriate for the work presented here is the numerical stability



164

and existence of the numerical inverse Laplace transform (see Chapter 5); some

additional forms may be valid but they would have little physical significance to

the current problem. For well-behaved f̄(x, p), there is a physically unique f(x, t)

(excluding discontinuous points where the function may differ – i.e., Lerch’s theo-

rem). If the true solution is discontinuous in time at t = τ , the inverse transform of

the image function converges to the average value at that point,

f(τ) =
1

2
[f(τ − ε) + f(τ + ε)] , (A.5)

where ε → 0. This mathematical detail comes up when trying to evaluate an in-

verse Laplace transform at t = 0. The function is defined to be zero for t < 0 and if

it is non-zero for t ≥ 0; the solution will converge to f(t = 0+)/2. Most numerical

inverse Laplace transform algorithms also have unrelated problems with evaluat-

ing functions at or very close to t = 0, because this point essentially corresponds

to p→∞, which causes difficulties when evaluated on a computer with finite pre-

cision. The Möbius methods often handle this point best of the numerical inverse

algorithms discussed in Chapter 5.

A.3 General properties

The properties of Laplace transforms, which make them useful for solving differ-

ential equations, are the simplicity of calculus operations in Laplace space. Using

integration by parts on (A.1), derivatives with respect to time can be seen to be

equivalent to multiplication by p (with an assumption of zero initial condition).

Integration with respect to time is likewise division by p. Analogously, taking a

derivative of (A.4) with respect to p shows how multiplication by powers of −t in

the time domain corresponds to differentiation in Laplace space. An alternating

sign power series in t can be related to a Taylor series in p.
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A.4 Some time behaviors

Some time behaviors that are potentially useful for hydrology applications (i.e.,

behavior of pumping wells) are given in Table A.2. Except for cos(kt), these func-

const step on pulse from τ1 to τ2 steps (k wide) cosine
f(t) c H(t− τ) H(t− τ1)−H(t− τ2)

∑
H(t− k) cos(kt)

f̄(p) 1/p e−τp/p (e−τp − e−2τp)/p2 1/(p− pe−kp) p/(p2 + k2)

TABLE A.2. Useful LT-AEM time functions

tions are all discontinuous in time. The ability of the Laplace transform to handle

discontinuous time functions is both a benefit and a potential weakness for numer-

ical inversion of the resulting image function, as discontinuous functions are the

most difficult types of functions to invert accurately. Step-like functions, with con-

tinuous derivatives can be used in place of the unit step, but translating this time

behavior to a non-zero time involves using the shift operator, e−τp, which itself has

a step behavior.
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Appendix B

VECTOR COORDINATE CHANGE

A detailed treatment of vectors in different coordinate systems is found in Morse

and Feshbach (1953, §1.3) or Chou and Pagano (1992, §12), the required portions

of this theory needed to compute useful Jacobians for projecting flux from one

coordinate system to another are given here, with an example of a transform given.

B.1 Metric coefficients

A coordinate system is defined by its metric coefficients; they are fundamentally

defined in terms of the length element,

ds2 = dx2 + dy2 + dz2 =
∑
n

h2
nξ

2
n, (B.1)

where hn is the scale factor (i.e., metric coefficient) for the general coordinate ξn.

Cartesian coordinates conveniently have unit scale factors and constant unit vec-

tors; the scale of the coordinates is invariant with position. Table B.1 gives the

metric coefficients for the 2D coordinate systems used in this work. Metric coeffi-

ξ1 h1 ξ2 h2

Cartesian x 1 y 1
polar r 1 θ r

elliptical η f
√

cosh2 η − cos2 ψ ψ f
√

cosh2 η − cos2 ψ

parabolic u
√
u2 + v2 v

√
u2 + v2

TABLE B.1. Metric coefficients for Helmholtz-separable coordinate systems

cients for 3D coordinates (Table 3.2) are quite lengthy for some of the coordinates,

and can be found in Moon and Spencer (1961b).
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B.2 Vector transformation

The fundamental definition of how vectors transform from one coordinate system

to another is

F ′n =
∑
m

γmnFm, (B.2)

where Fn is the nth component of the vector F, the primed component is in the new

coordinate system, the unprimed component in the old system, and γ is a direction

cosine. The γ can be defined equivalently in either of the following ways

hm
h′n

∂ξm
∂ξ′n

= γmn =
h′n
hm

∂ξ′n
∂ξm

. (B.3)

The alternate definitions are useful, since sometimes a derivative with respect to

the old coordinate system is much simpler to compute than with respect the new

one.

B.3 Example transformation

As an example, a conversion of the flux from a polar coordinate system, to an el-

liptical coordinate system is given in detail. This could be used to project the flux

vector due to a circular element onto the normal to the boundary of an elliptical el-

ement, which is required to preserve normal flux continuity. The circular element

has local coordinates (r, θ), while the elliptical element has local coordinates (η, ψ);

as an intermediate step, the transformation goes through the global Cartesian co-

ordinates.

A vector, F, which is the negative gradient of a scalar, φ, in an arbitrary coordi-

nate system is

F =
∑
n

Fneξn = −∇φ = −
∑
n

1

hξn

∂φ

∂ξn
eξn . (B.4)

where eξ1 is the unit vector in the ξ1 direction.
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Flux in the local coordinate for the circular element is given as

c
q = −

 1

hr

∂
c

Φ̄

∂r
er +

1

hθ

∂
c

Φ̄

∂θ
eθ

 , (B.5)

where the overset character indicates which element the flux or potential is for.

(B.5) simplifies to

c
q = −

∂ c

Φ̄

∂r
er +

1

r

∂
c

Φ̄

∂θ
eθ

 . (B.6)

Flux in the local coordinate for the ellipse is

e
q = −

 1

hη

∂
e

Φ̄

∂η
eη +

1

hψ

∂
e

Φ̄

∂ψ
eψ

 , (B.7)

which simplifies to

e
q =

−1

f
√

cosh2 η − cos2 ψ

∂ e

Φ̄

∂η
eη +

∂
e

Φ̄

∂ψ
eψ

 . (B.8)

For flux matching on the boundary of the ellipse, the flux effects of the circular

element (both radial and angular components) are needed, but expressed in terms

of the elliptical element’s radial coordinate, η (the normal to the elliptical bound-

ary). Using the transformation definition (B.2),
c
qη can be defined first in terms of

Cartesian coordinates as
c
qη = γηx

c
qx + γηy

c
qy, (B.9)

then each of the Cartesian flux components can be defined in terms of the polar

coordinates of the circular element as
c
qx = γxr

c
qr + γxθ

c
qθ,

c
qy = γyr

c
qr + γyθ

c
qθ,

(B.10)

Substituting (B.10) into (B.9), gives

c
qη = [γηxγxr + γηyγyr]

c
qr + [γηxγxθ + γηyγyθ]

c
qθ, (B.11)
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which becomes the following, after substituting the definitions of the direction

cosines (B.3),

c
qη =

[(
hx
hη

∂x

∂η

)(
hx
hr

∂x

∂r

)
+

(
hy
hη

∂y

∂η

)(
hy
hr

∂y

∂r

)]
c
qr (B.12)

+

[(
hx
hη

∂x

∂η

)(
hx
hθ

∂x

∂θ

)
+

(
hy
hη

∂y

∂η

)(
hy
hθ

∂y

∂θ

)]
c
qθ.

This simplifies to

c
qη =

1

hη

{[
∂x

∂η

∂x

∂r
+
∂y

∂η

∂y

∂r

]
c
qr +

[
∂x

∂η

1

r

∂x

∂θ
+
∂y

∂η

1

r

∂y

∂θ

]
c
qθ

}
. (B.13)

Derivatives of the coordinates required above are computed from definitions:

∂x

∂η
= f sinh η cosψ;

∂y

∂η
= f cosh η sinψ;

∂x

∂r
= cos θ;

∂y

∂r
= sin θ; (B.14)

∂x

∂θ
= −r sin θ;

∂y

∂θ
= r cos θ;

This finally gives the expression for flux with respect to the radial coordinate of

the ellipse, due to a circular element as

c
qη =

f

hη

{
[sinh η cosψ cos θ + cosh η sinψ sin θ]

c
qr (B.15)

− [sinh η cosψ sin θ − cosh η sinψ cos θ]
c
qθ
}
,

which is entirely in terms of the coordinates where the derivatives are being evalu-

ated. For the case of flux matching on the boundary of the ellipse, the M matching

points along the boundary all have the same η = η0 value, they have a range of

−π < ψ ≤ π, and the polar coordinates are these matching points, in terms of the

local coordinates of the circle (which depends on the translation and rotation of the

two local coordinate systems with respect to the global Cartesian system).

The definitions of flux as the gradient of potential can also be inserted into the
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definition, which makes the expression

1

hη

∂
c

Φ̄

∂η
=
f

hη

[sinh η cosψ cos θ + cosh η sinψ sin θ]
∂
c

Φ̄

∂r
−

[sinh η cosψ sin θ − cosh η sinψ cos θ]
1

r

∂
c

Φ̄

∂θ

 ,

(B.16)

but the metric coefficients associated with the radial flux for the ellipse (LHS),

would cancel with a similar metric coefficient, which accompanies the normal flux

term on the inside of the ellipse, and is evaluated at the same location.
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Appendix C

LT-AEM AND METHOD OF WEIGHTED RESIDUALS

The method of weighted residuals (MWR) is introduced to illustrate how AEM

and LT-AEM fit within this framework. Quite generally, in MWR the free param-

eters associated with some test or basis functions are chosen so that the residual

associated with the solution is made to in some average sense.

C.1 MWR derivation

Following the outline presented in Finlayson (1972, §1), a general MWR solution

is posed for the 2D modified Helmholtz equation (2.3) with type I boundary con-

ditions. First, the solution is expanded in a set of complete orthogonal basis func-

tions,

Φ̄(x, p) ≈
N∑
i=1

ci(p)φi(x, p), (C.1)

where φi are known basis functions, ci are constants to determine, and the relation

is approximate because the series is truncated at N terms. Unless the trial func-

tions are analytic solutions to the problem (satisfying both the PDE and boundary

conditions exactly), they will produce a residual, R, which must be minimized.

The residual is computed by substituting (C.1) into governing equation (2.3),

RD(ci,x, p) =
∑
i

[
∇2φi(x, p)− κ2φi(x, p)

]
ci(p), (C.2)

and the boundary conditions

RB(ci, s, p) =
∑
i

ci(p)φi(x(s), p)− Φ̄BC(s, p), (C.3)

where s parametrizes the boundary (e.g., arc length or angle), and Φ̄BC is a specified

potential boundary condition (BC). The total residual is the sum of the domain and
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boundary residuals, R = RB + RD. Type II BC, sometimes referred to as natural

BC, arise naturally when posing the PDE in integral form, through use of Gauss’

divergence theorem, and therefore do not need special consideration. Type I BC

are handled here separately from the PDE; type III BC would be handled similar

to the manner in which type I BC are illustrated here.

The weighted integral of the residuals over the domain is forced to zero,∫
Ω

wjRDi dA+

∫
Γ

wjRBi dΓ = 0 (C.4)

where wj is a general weight function (to be chosen later), Ω represents the interior

of the domain, Γ the domain boundary (see Figure C.1), and A is the domain area.

FIGURE C.1. Notation used for MWR problem

Substituting the definition of the residuals (C.2 and C.3) into (C.4) gives∑
i

ci

∫
Ω

wj
[
∇2φi − κ2φi

]
dA+

∑
i

∫
Γ

wj
[
ciφi(s)− Φ̄BC(s)

]
ds = 0. (C.5)

This can be rearranged as∑
i

{∫
Ω

wj
[
∇2φi − κ2φi

]
dA+

∫
Γ

wjφi(s) ds

}
ci =

∫
Γ

wjΦ̄BC(s) ds (C.6)

which then can be written compactly in matrix form asAijci = bj . In theory, theAij

matrix could be inverted to find the coefficients, ci, once the basis and weighting

functions are known and the integrals are evaluated.

The MWR as outlined above is very broad and inclusive; different choices for

the weight and basis functions result in different numerical methods as special

cases.
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C.2 Choice of basis function

There are three choices for the basis functions, φi, based on how they affect RD and

RB;

• interior: basis functions satisfy BC, but not PDE (RB ≡ 0),

• mixed: basis functions don’t satisfy either BC or PDE,

• boundary: basis function satisfy PDE, but not BC (RD ≡ 0).

AEM, LT-AEM and the boundary element method use boundary-type basis

functions, while the spectral element method, and finite element methods basis

functions come from the mixed or interior class. In boundary methods, the resid-

ual is identically zero throughout the interior of the domain. The total residual

reduces to just RB, which in 2D is a line integral along the domain boundary; only

the second integral in (C.5) is non-zero.

C.3 Choice of weight function

The collocation boundary matching approach can be fit into this MWR framework

by picking ` = 1, 2, . . . ,M points along the boundary, defining the weight function

as

wj(s`) = δ(s− s`) (C.7)

which is illustrated in Figure C.2. Due to the properties of the δ-function, the inte-

gral is reduced to the value of the boundary residual at the collocation points. The

total residual for a method using boundary-type basis functions, becomes the sum

of these errors,
M∑
`=1

N∑
i=1

[
ciφi(s`)− Φ̄BC(s`)

]
= 0. (C.8)
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FIGURE C.2. Use of weight function to discretize boundary

For example, when the element is a circle and φn(s`) = cos(nθ`) this expression be-

comes a trigonometric interpolation of the specified boundary condition (Lanczos,

1956, §4.11).

A different choice of weighting function can also incorporate the least-squares

(overspecification) collocation approach introduced to the AEM community by

Janković (1997), mentioned as an alternative approach by Boyd (2000, §3.1), and

previously known in the MWR community. The history of this approach is re-

counted by Finlayson (1972, p.27); it dates back to 1964 in nuclear reactor engi-

neering. If the weighting function is chosen as

wj(s`) =
∂Rj

∂cj
δ(s− s`) (C.9)

the integral along the boundary becomes

M∑
`=1

N∑
i=1

[
ciφi(s`)− Φ̄BC(s`)

]2
= 0. (C.10)

due to the linearity of the residual to cj . This is the classic least-squares collocation

problem, posed in the framework of the MWR. This is the formulation for one

active element, but as discussed in section 2.6, the method can be readily extended

to any number of active elements simultaneously using a direct approach.

While this taxonomic discussion does not change the way in which LT-AEM

problems are posed or solved in practice, it does put LT-AEM in its place among

the many numerical methods that fall under the MWR umbrella.
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Appendix D

EIGENFUNCTION EXPANSION

The relevant theoretical foundation of eigenfunction expansion (EE) is given here,

as it applies to LT-AEM. While often considered an “elementary” technique for

solving PDEs, it is the most geometrical and intuitive PDE solution method. In

general, solutions for a PDE and its associated boundary conditions can be found

using

• eigenfunction expansion (separation of variables);

• Green’s functions (integration of fundamental solutions);

• variational methods (integral approach using weak form of PDE).

The Green’s function and variational approaches work for arbitrarily-shaped do-

mains, but result in integrals that often can only be evaluable in closed form for

simple geometries. The variational approach is one of the foundations for the Tr-

efftz boundary element (Qin, 2000) and finite element methods (Hughes, 2000).

Finite elements can equivalently be considered a special case of the MWR solution

in Appendix C. The direct BEM (Brebbia et al., 1984) and AEM approach of Strack

(1989, 2003) are based upon a Green’s function solution. The LT-AEM approach

taken here uses eigenfunction expansion.

In general, successful EE depends on meeting the following conditions, para-

phrased from Gustafson (1999):

1. the domain can be described in some coordinate system so that the bound-

aries consist of constant curves in that coordinate system;

2. the PDE is separable into ODEs corresponding to coordinate variables;
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3. the resulting ODEs are solvable (by means of special functions).

Gustafson (1999) also includes a qualification that the domain be bounded, but this

condition can often be relaxed, given the proper coordinate system and boundary

condition at infinity. This point was operationally addressed in the section on LT-

AEM boundary conditions (section 2.5.2).

Separation of variables is believed to have been first used by Daniel Bernoulli in

1753 for the taut string problem (Jeffreys and Jeffreys, 1972, p.436). The functions

comprising the Generalized Fourier series are orthogonal and form a separable

Hilbert space (infinite dimensional) solution (MacCluer, 2004, §6). The modern

Hilbert space approach can be used to justify the existence of the separation of

variables solution on more rigorous grounds, but is not pursued here.

D.1 Generalized Fourier series

The Fourier series approach posits that any piecewise-smooth function can be ap-

proximated using trigonometric functions over a periodic domain (e.g., f(θ) =

f(θ + 2π)). Finite, non-periodic regions can be mapped onto periodic ones, result-

ing in Chebyshev polynomials, which extends the approach to additional domains.

The expansion of a PDE solution in terms of Fourier or equivalent Chebyshev func-

tions is the foundation of the spectral element method (SEM).

For SEM, Boyd (2000, §1.6) argues that one should always use Chebyshev poly-

nomials or Fourier series, due to their simplicity, rather than the potentially “ex-

otic” basis functions that may satisfy the ODEs in some coordinate systems (e.g.,

elliptic and parabolic). This viewpoint is held by many engineers and modelers,

because the trigonometric basis functions do so well in most situations, and typ-

ically they are unfamiliar with coordinate systems beyond Cartesian and polar.

In support of using the appropriate eigenfunction expansions, rather than blindly

using Fourier series everywhere, Gustafson (1999) contends:
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“One might ask, why solve all these special classes of ODEs resulting

from separation of variables, why not just expand everything in terms

of the trigonometric functions and hope for the best? One can indeed

adopt the latter viewpoint in many cases, accepting the resulting ‘ap-

proximate’ solutions given by the partial sums of the Fourier trigono-

metric expansion. But those solutions are not as good as those resulting

from the natural expansion functions, the error may be harder to deter-

mine, and the ‘physically correct’ fit has been lost.”

Morse and Feshbach (1953, §6.3) illustrate how the convergence of any proper

set of eigenfunctions is the same as a Fourier series expansion of the same func-

tion; they prove that the expansion of any continuous function in eigenfunctions

converges or diverges at any point as the related Fourier series converges or di-

verges at that point. Since a large body of theory has been developed to prove the

convergence and summability of Fourier series under a broad range of conditions

(e.g. Lanczos, 1966; Torchinsky, 2004); these proofs then also apply to eigenfunc-

tion expansions, earning them the title generalized Fourier series.

Reasons for using trigonometric and Chebyshev series, rather than the proper

generalized eigenfunctions, include familiarity, ease of implementation, and the

existence of the fast Fourier transform (FFT). While some generalized “fast” eigen-

function transforms do exist for special functions with a 3-term recurrence rela-

tionship (Orszag, 1986), they are not as efficient as the venerable FFT. Although

many engineers will go to great lengths to apply fast transforms, in LT-AEM and

other boundary approaches, these types of fast transforms do not have the huge

impact they do in SEM and other interior methods. The fast transforms only show

large gains when N ≥ 10, 000 (Boyd, 2000, §10). In fact, Orszag (1986) states that

the largest fraction of the total improvement in solving problems using EE and fast

transforms comes from separating the coordinates (e.g., making the boundary a
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circle, where r is a constant). The speedup from using a fast transform to evaluate

the eigenfunctions (even FFT) is secondary.

A disadvantage for using the proper eigenfunctions that satisfy the PDE comes

from the complex-valued Laplace parameter. Since the parameter appears explic-

itly in the governing equation as κ =
√
p/α, any set of eigenfunctions which sat-

isfies this PDE will likewise incorporate κ into their definition, requiring the spe-

cial functions to be evaluated for complex argument or parameter. Most special

functions take on very different behavior for complex argument. When utilizing

interior-type basis functions (like SEM, finite difference or finite element — see

§C.2 for interior/exterior definitions), the basis functions need not be complex-

valued; only the coefficients need to be complex. This advantage is balanced by the

fact that interior methods require matching at both boundary and domain points,

effectively increasing the dimensionality of the numerical problem, making fast

transforms more necessary.

Eigenfunctions are as powerful as Fourier series and more importantly they

are the natural basis functions that automatically satisfy the PDE (and therefore

make good candidates for boundary methods like LT-AEM). It then seems that this

approach is very useful for LT-AEM. More general and potentially approximate

approaches for deriving elements (e.g., integration of Greens’ functions or interior

basis function methods) should be taken only when these methods fail.

D.2 Convergence of Fourier series

In LT-AEM, issues related to the convergence of Fourier series arise in two places.

First they arise in the convergence of the series of spatial basis functions that com-

prise the LT-AEM elements themselves, since the elements are generalized Fourier

series. Secondly, they can arise in the convergence of the inverse Laplace transform

methods, since the Fourier series approach is an effective strategy for solving the
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numerical inverse Laplace transform. While the discussion here is mostly centered

around the first point, the Laplace transform inversion discussion in Chapter 5

benefits as well.

For infinitely smooth functions (functions with continuous derivatives of every

order), a Fourier series expansion is said to have exponential or spectral conver-

gence (Boyd, 2000, §2.4). This means the magnitude of the coefficients decrease

faster than 1/nk for any finite k. This is the ideal case, any flaws in the function or

its derivatives will degrade the rate of convergence.

D.2.1 Singularities

Darboux’s principle states that both the domain and rate of convergence for a

power series is controlled by the location and strength of the gravest singularity

(Boyd, 2000, §2.6). Singularities include poles, fractional powers, logs and discon-

tinuities in the function or its derivatives. For AEM, point sources are typically

not located directly on boundaries between regions, so functional discontinuities

are the main concern. While it is possible to locate singularities on boundaries be-

tween regions, this would result in a potentially divergent, or at least very slowly-

converging eigenfunction series. In practice the singularity could be moved off the

boundary line by a small amount, greatly reducing the strength of the discontinu-

ity in the function to be expanded, but giving essentially the same solution.

While Darboux’s principle is related to the convergence of a power series, it is

equally valid for Fourier series, since they can be recast as complex power series.

For example, an infinite trigonometric series can be equivalently expressed in the
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following forms

f(x) =
∞∑
n=0

an cosnx+
∞∑
n=1

bn sinnx (D.1)

=
∞∑

n=−∞

cne
inx (D.2)

=
∞∑
n=0

cnz
n +

∞∑
n=1

c−nz
−n (D.3)

where c±n = 1
2

(a±n ∓ ib±n) and z = exp (ix). Equation (D.3) is a power series style

representation of the function, heavily utilized in older steady AEM solutions (e.g.

Strack, 1989; Salisbury, 1992). A benefit of working with the trigonometric form

(D.1), rather than the more compact power series form (D.3) is the ease of handling

of even- or odd-symmetric boundary conditions.

Integral expressions for the Fourier series coefficients in (D.1) are derived using

orthogonality of the sines and cosines∫ π

−π
sinnθ sinmθ dθ =

∫ π

−π
cosnθ cosmθ dθ = πδnm (D.4)

where δ is the Kronecker delta. The coefficients are found by multiplying by either

cosmθ or sinmθ, then integrating over the domain (−π ≤ x ≤ π), giving

an =
1

π

∫ π

−π
f(θ) cosnθ dθ (D.5)

bn =
1

π

∫ π

−π
f(θ) sinnθ dθ (D.6)

These integral representations for the coefficients can be used to determine their

leading behavior for large n. Integration by parts is a common technique for de-

riving asymptotic behavior when the method is appropriate (Bender and Orszag,

1999); applied to (D.5) it yields

an =
1

π

{[
f(θ)

n
sin(nθ)

]π
−π
− 1

n

∫ π

−π
f ′(θ) sin(nθ) dθ

}
. (D.7)
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Using parts again on the remaining integral in (D.7) gives

an =
1

π

{[
f(θ)

n
sin(nθ)

]π
−π

+

[
f ′(θ)

n2
cos(nθ)

]π
−π
− 1

n2

∫ π

−π
f ′′(θ) cos(nθ) dθ

}
. (D.8)

The sine term falls out due to the boundary conditions, as n→∞ the second term

is most significant, since higher derivatives of f(θ) are presumably small, and not

a function of n; this leaves

an ∼
(−1)n

πn2
[f ′(π)− f ′(−π)] . (D.9)

Analogous analysis for the sine coefficients (D.6) leads to

bn =
1

π

{[
f(θ)

n
cos(nθ)

]π
−π

+

[
f ′(θ)

n2
sin(nθ)

]π
−π
− 1

n2

∫ π

−π
f ′′(θ) sin(nθ) dθ

}
, (D.10)

which, for large n, behaves as

bn ∼
(−1)n

πn
[f(π)− f(−π)] . (D.11)

For any general f(θ), the sine coefficients in (D.11) decay in magnitude as

O(1/n), but if f(θ) is smooth the cancellation in the f(π)− f(−π) term suppresses

this leading behavior. Going back to (D.10) and performing parts again, we see

the next most significant bn term would be O(1/n3), while the remaining cosine

coefficients are O(1/n2); if the first derivative is also smooth, then the next sine

term dominates. Based on this analysis we would then expect convergence of the

coefficients to be at least O(1/n2) for smooth functions, and O(1/n3) for functions

with smooth head and flux (with respect to θ). Continuing this process, we can

see how an infinitely smooth function would have coefficients that converge faster

than 1/nk, for any finite k, which is spectral convergence (Boyd, 2000). To gener-

alize the previous discussion, a single discontinuity can always be shifted to the

location θ = ±π, and a region with multiple discontinuities can be broken into

piecewise-smooth regions with each mapped onto the −π ≤ θ ≤ π interval.
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D.2.2 Fourier series residual

Given a general infinite Fourier series, (D.1), and the partial sum of the first N

Fourier terms, fN(x), the truncation error in the finite Fourier expansion,

RN = |f(x)− fN(x)|, (D.12)

is bounded by the sum of all neglected coefficients,

RN ≤
∞∑

n=N+1

[|an|+ |bn|] , (D.13)

since the trigonometric functions have an absolute value ≤ 1. For large n, the

coefficients of an infinitely smooth Fourier series decay exponentially, therefore

the truncation error is on the order of the size of the last term retained,

RN ∼ O(|aN |) ∼ O(|bN |). spectral (D.14)

For the case where the function is not smooth, convergence will be sub-spectral

(or sub-geometric); low-order algebraic convergence (worst-case) leads a residual

term of larger order (Boyd, 2000, §2.12),

RN ∼ O(N |aN |) ∼ O(N |bN |) algebraic (D.15)

where |aN | must be smaller, therefore requiring more terms, to achieve the same

residual compared to the spectrally-convergent case, because the infinite sum of

truncated Fourier series coefficients is not dominated solely by the first neglected

term.

D.2.3 Gibbs’ phenomenon

The type of singularity which is of most concern to LT-AEM problems is a discon-

tinuity, which leads to slower algebraic convergence. This poor convergence was

first explained by Gibbs (1898), where a truncated Fourier series systematically
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over- and under-shoots a jump by ≈ ±9% of the jump value. As N increases, the

width of the overshoot region becomes smaller, but the amplitude of the over- and

under-shoot does not.

There are several strategies for improving poor convergence in cases where

Gibb’s effect is problematic; popular tactics include series transformation and ac-

celeration (Oleksy, 1996), the use of smoothing factors to dampen high-frequency

oscillations (Lanczos, 1966), or simply ignoring the problem and using a very large

number of terms (confining the error to a very small region). When using the large

N “brute force” approach, care must be exercised. When manipulating series that

are exhibiting Gibb’s oscillations, the integral of such a series will certainly exist,

but derivatives may not (Morse and Feshbach, 1953, §6.3). Smoothing factors can

both reduce the high-frequency oscillations associated with Gibb’s phenomenon

and increase the convergence of the trigonometric series. For a truncated Fourier

series, the Lanczos σ factors simply modify the existing coefficients,

fN(x) =
N−1∑
n=0

σnan cosnx+
N−1∑
n=1

σnbn sinnx (D.16)

where the σ factors come from the “sinc” function used in digital signal processing

(Smith, 1999, p. 212). The σ-factors are analogous to taking a moving average of

the function, before expanding it in a Fourier series Lanczos (1956, §4.10). The

σ-factors and sinc function are defined as

σk(N) =
sin(kπ/N)

kπ/N
, (D.17)

using this σ0 = 1 and σN → 0; higher frequency harmonics are damped. These fre-

quencies would normally be damped by still higher frequency terms that have not

been included, due to truncation of the series. While the σ terms do not eliminate

Gibb’s phenomenon, they reduce it from ≈ ±8.95% to ≈ ±1.19% of the jump dis-

continuity magnitude (Lanczos, 1956). Other trigonometric smoothing coefficients

similar to this one, utilized in the SEM literature, are given by Canuto et al. (2006).
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In his PhD dissertation, Janković (1997) implemented intersecting steady circu-

lar AEM elements, which were discontinuous in θ. He declared them to be largely

unusable, since a very large number of terms (thousands) were required to keep

the overshoot confined to a small region. He did not attempt to use smoothing

factors or series transformations to improve the convergence of the series.

The only place in eigenfunction expansion, where Gibb’s phenomena have

arisen, has been in expansion of discontinuous boundary conditions. For exam-

ple, using an active circular element with Φ(r0, 0 ≤ θ < π) = 1 and Φ(r0,−π ≤

θ < 0) = 0 would have convergence issues at θ = 0 and ±π. These issues were not

extensively investigated, since this type of boundary condition was considered

non-physical. This type of boundary does arise when intersecting elements (as de-

scribed above); for circular elements the Lanczos σ-factors or series transformation

and acceleration techniques of Oleksy (1996) would lead to improvements. For el-

liptical elements there is less theory regarding the acceleration of convergence of

these series, but similar approaches can be taken.
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Appendix E

MATHIEU FUNCTIONS

We introduce the properties of Mathieu functions (MF) needed for the applica-

tions demonstrated in section 3.2. The angular MF follow the original (British

mathematical) naming convention introduced by Whittaker (1912), which draws

on the analogy to trigonometric functions. For the radial MF the newer (Amer-

ican physics) naming convention is used (e.g. Stratton, 1941; Chu and Stratton,

1941; Morse and Feshbach, 1953), which draws on the analogy between Bessel and

Mathieu functions. This hybrid nomenclature is common, but not universal. See

Gutiérrez Vega et al. (2003) and Abramowitz and Stegun (1964, §20) for tables list-

ing equivalences between the different common naming conventions that exist in

the MF literature.

For the Helmholtz equation in elliptical coordinates, Mathieu functions are the

proper eigenfunctions, which are discussed in the section on generalized Fourier

series D.1; Arscott (1964, §3.9.1) has some specific discussion and lists additional

references related to proofs on the convergence of series of Mathieu functions.

E.1 Higher special functions

The ODEs that arise when performing separation of variables on the Helmholtz

equation lead to various special functions (see Table 3.2), including Mathieu func-

tions. These coordinate systems and special functions can be categorized by their

singularities (e.g. Ince, 1956; Moon and Spencer, 1961b; Arscott, 1981). Cartesian,

spherical and circular cylindrical are the simplest three coordinates, correspond-

ing to the three in most common use. These simpler coordinate systems can be

derived from a general coordinate system with three regular singularities (Morse
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and Feshbach, 1953, §5), by moving the singularities to 0 or ∞ and, if required,

moving two of them together (a confluence of singularities). This three-singularity

coordinate system is solved most generally by hypergeometric functions; exponen-

tial, Bessel, and Legendre functions are all special cases of hypergeometric func-

tions (Andrews, 1998, §9–12). Hypergeometric functions can always be put into

a two-term recurrence, which essentially means the functions turn a second-order

differential equation into a first-order difference equation. This is one of the funda-

mental reasons there are so many “nice” relationships involving Bessel functions

and their derivatives (e.g. Watson, 1944; McLachlan, 1955).

The rest of the coordinates systems (rotational, except spherical, and general)

and their associated special functions in Table 3.2 do not conform to this three-

singularity model (Arscott, 1981). The ODEs that arise from performing separation

of variables on the Helmholtz equation in these more general coordinate systems

(except for ellipsoidal coordinates) are simplifications of the Heun equation, which

has four regular singularities (Ronveaux, 1995, §1). Solutions to this equation have

three-term recurrences; a second-order differential equation is transformed into a

second-order difference equation. While usable, this three-term recurrence is not

the big improvement seen with the two-term recurrence arising from the hyperge-

ometric equation.

The point being made is that Mathieu functions are more complicated than

Bessel functions; they do not share most of the nice properties of Bessel functions.

The general and rotational (except spherical) coordinate systems appearing in Ta-

ble 3.2 are on par with, or more difficult than, elliptic coordinates (most certainly

with fewer references and publications). This is seen as a limitation of the eigen-

function expansion approach for developing LT-AEM elements. In these cases a

simpler Fourier or Chebyshev series approach (Boyd, 2000) may be worth the ex-

tra effort and inelegance required to implement it.
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E.2 Matrix formulation

To compute MF of complex argument, the matrix formulation of the eigenvalue

problem is used (Chaos-Cador and Ley-Koo, 2002; Stamnes and Spjelkavik, 1995).

Because of their required periodicity, the angular MF can be expanded in either

odd or even Fourier series; general expressions for the solutions are therefore of

the form

Cn(ψ) =
∞∑
r=0

Ar cos rψ, (E.1)

Sn(ψ) =
∞∑
r=1

Br sin rψ. (E.2)

Putting these expressions into the angular Mathieu equation leads to the fol-

lowing four (even and odd coefficients are independent) recurrence relationships

for the Mathieu coefficients (McLachlan, 1947, §3.10)

aA0 − qA2 = 0

(a− 4)A2 − q(2A0 + A4) = 0 (E.3)

(a− j2)Aj − q(Aj+2 + Aj−2) = 0 j = 4, 6, 8, . . .

(a− 1)A1 − q(A1 + A3) = 0

(a− j2)Aj − q(Aj+2 + Aj−2) = 0 j = 3, 5, 7, . . . (E.4)

(b− 4)B2 − qB4 = 0

(b− j2)Bj − q(Bj+2 +Bj−2) = 0 j = 2, 4, 6, . . . (E.5)

(b− 1)B1 − q(B3 −B1) = 0

(b− j2)Bj − q(Bj+2 +Bj−2) = 0 j = 3, 5, 7, . . . (E.6)
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where a and b are the traditional names for the separation constant in Mathieu’s

equation (Mathieu characteristic numbers), for the even and odd solutions, respec-

tively (see Table 3.1). These recurrence relationships can be put into to the form of

infinite tri-diagonal matrices minus a constant on the diagonal, multiplied by a

vector of Mathieu coefficients, which is the form of an eigenvalue problem. For

example, the even-indexed even coefficients (E.3) can be expressed in matrix form

as 



0 q . . . . . . . . .
2q 4 q

q 16 q
... . . .
... q [2(M − 2)]2 q

q [2(M − 1)]2


− aI





A0

A2

A4
...

A2(M−2)

A2(M−1)


= 0 (E.7)

where the infinite recursion is truncated at M terms, and there would be similar

matrix expressions for the other three recurrence relationships. A non-degenerate

square matrix of rank M has M eigenvalues, for each eigenvalue there is an eigen-

vector. This matrix problem is readily and accurately solved with LAPACK routine

ZGEEV (Anderson et al., 1990). When q is real, the matrix can be made symmetric,

and the solution can be found more efficiently using Cholesky factorization. For

complex q, the matrix would need to be Hermitian to be made similarly efficient

(not possible in the current application).

It is also clear in matrix form, that when q → 0 the matrix becomes diagonal;

the eigenvalues of a diagonal matrix are simply the values on the diagonal, which

are integers. The MF each reduce to only one of the harmonics in (E.1), indicating

how MF degenerate to sine or cosine.

Blanch and Clemm (1969) give an example of the traditional continued frac-

tion approach applied to the complex Mathieu parameter case, which is poten-

tially more efficient than the matrix method, but requires an initial guess and is

only valid for small Mathieu parameter, |q| ≤ 4n, with asymptotic relationships
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required for larger q (e.g. Alhargan, 2000a; Hunter and Guerrieri, 1981; Arscott,

1964). The matrix used to compute the eigenvectors is a truncated infinite ma-

trix; the size of the matrix required is proportional to the highest order of MF

needed, the accuracy desired, and |q| (Delft Numerical Analysis Group, 1973); we

find N+20 terms is adequate in most cases (where N is the highest order of MF

needed).

E.3 Double points

When the Mathieu parameter takes on complex values (because complex p are re-

quired for L−1), the eigenvalues become complex, and in the case of the angular

Mathieu equation, pairs of eigenvalues (and their associated eigenvectors) degen-

erate at isolated branch points (i.e., double points) in the complex q plane. Fig-

ure E.1 illustrates the double points in a portion of the first quadrant; a(q) and b(q)

for the other quadrants can be found through symmetries (Hunter and Guerrieri,

1981) (a2n+1 and b2n+1 switch across the imaginary axis).

As given in Table 3.1, an,m is the mth degenerate eigenvalues for cen(ψ, q) and

bn,m the same for sen(ψ, q)). The complex coordinates of the double points in Fig-

ure E.1 are tabulated in Blanch and Clemm (1969) and their calculation is discussed

in Hunter and Guerrieri (1981). When q becomes complex and approaches one of

the double points shown in Figure E.1, two different eigenvalues approach one an-

other; e.g., at the value of qD ≈ 63 + 20i, labeled a9,11, ce9(ψ; qD) and ce11(ψ; qD) are

no longer orthogonal.

This eigenvalue degeneracy results in the occasional pair of eigenvectors being

less than orthogonal, depending on the value of q (numerically, the eigenvectors

aren’t likely to be exactly degenerate). This behavior is not a problem for the overall

convergence of the solution when a more general least-squares solution (e.g., LA-

PACK routine ZGELSS) is used, which can accommodate this occasional degener-
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acy (see least-squares discussion in section 2.6.3). All numerical L−1 methods use

Φ̄(x, p) for a vector of p values to compute a single time-domain solution. An entry

in this vector may coincide with a double point of Mathieu’s equation, shown in

Figure E.1, but because this degeneracy only affects a pair of the N eigenvectors at

one (or possibly two) of the values of p, it is not critical to the overall performance

of the method.
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FIGURE E.1. Double points of Mathieu’s equation (3.27), where the eigenvalues
associated with two eigenfunctions merge.
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E.4 Definitions

E.4.1 Angular Mathieu functions

Angular MF are evaluated from their definitions in terms of infinite sine and cosine

series (second kind non-period angular MF are not useful in our application), for

<(q) < 0 (which arises due to the sign on κ2 in the governing Yukawa or modified

Helmholtz equation) they are (McLachlan, 1947, §2.18):

ce2n(ψ,−q) = (−1)n
∞∑
r=0

(−1)rA
(2n)
2r cos[2rψ], (E.8)

ce2n+1(ψ,−q) = (−1)n
∞∑
r=0

(−1)rB
(2n+1)
2r+1 cos[(2r + 1)ψ], (E.9)

se2n+1(ψ,−q) = (−1)n
∞∑
r=0

(−1)rA
(2n+1)
2r+1 sin[(2r + 1)ψ], (E.10)

se2n+2(ψ,−q) = (−1)n
∞∑
r=0

(−1)rB
(2n+2)
2r+2 sin[(2r + 2)ψ], (E.11)

where A
(n)
r and B

(n)
r are matrices of Mathieu coefficients, corresponding to the an

and bn eigenvalues (both functions of q); the r terms of each comprise the eigenvec-

tors associated with the nth eigenvalue that provides a periodic solution to angular

Mathieu equation. Even order (2n and 2n+ 2) MF are π periodic, while odd order

MF are 2π periodic, see Table 3.1 for symmetries of the angular MF.

E.4.2 Mathieu coefficients

Because eigenvectors only define a direction, their length must be normalized ac-

cording to a standard. An extension of the normalization proposed by Goldstein

(1927) is used, since it is readily generalized to the complex case and it produces

angular MF of approximately unit size and constant amplitude for the entire range

of ψ (LAPACK subroutine ZGEEV returns this scaling, additionally scaling the
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largest element to be real). The Mathieu coefficients are normalized by∫ π

−π
cen(ψ,−q) ce∗n(ψ, q) dψ = π (E.12)∫ π

−π
sen(ψ,−q) se∗n(ψ, q) dψ = π (E.13)

where ∗ is complex conjugate, so the MF degenerate to trigonometric functions

as q → 0. These integrals specify that the angular MF have the same root mean

squared value as the trigonometric functions, 1/
√

2, and this quantity is not a func-

tion of q. All of the eigenvectors are normalized to unit length (which leaves the

sign ambiguous), except the coefficients of ce2n(ψ,−q), the first entry in the eigen-

vector is weighted twice,

2A0
0

(
A0

0

)∗
+
∞∑
r=1

A2n
2r

(
A2n

2r

)∗
= 1. (E.14)

The sign of the eigenvectors is set so that the real portion of the diagonal elements

positive; this allows the Mathieu functions to naturally degenerate to their corre-

sponding trigonometric functions as q → 0.

Alternate normalizations Morse and Feshbach (1953, p.1409) are in common

use (Alhargan, 2000a), but lead to large values of the angular MF for large values

of q, and do not readily generalize to complex q.

E.4.3 Radial Mathieu functions

Radial MF are best defined in terms of Bessel function product series (convergent

for all η); the most appropriate definitions are given below. These definitions are

for <(q) < 0, explicitly indicated by the negative on q on the left hand side. The

effects of changing the sign of q from the standard definition are accounted for by

the change of variables z̃ = π
2
− z, then the “non-negative” value for q is used

when it appears on the right hand side of the definitions below. The radial MF are
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defined as (McLachlan, 1947, §13.30)

Ie2n(η,−q) =
(−1)np2n[
A

(2n)
0

]2

∞∑
r=0

(−1)rA
(2n)
2r Ir(v1)Ir(v2), (E.15)

Ie2n+1(η,−q) =
(−1)ns2n+1

√
q
[
B

(2n+1)
1

]2

∞∑
r=0

(−1)rB
(2n+1)
2r+1 [Ir(v1)Ir+1(v2) + Ir+1(v1)Ir(v2)] ,

(E.16)

Io2n+1(η,−q) =
(−1)n+1p2n+1

√
q
[
A

(2n+1)
1

]2

∞∑
r=0

(−1)rA
(2n+1)
2r+1 [Ir(v1)Ir+1(v2)− Ir+1(v1)Ir(v2)] ,

(E.17)

Io2n+2(η,−q) =
(−1)n+1s2n+2

q
[
B

(2n+2)
2

]2

∞∑
r=0

(−1)rB
(2n+2)
2r+2 [Ir(v1)Ir+2(v2)− Ir+2(v1)Ir(v2)] ,

(E.18)

where v1 =
√
qe−η and v2 =

√
qe+η and the angular MF identities used above are

p2n = ce2n(0, q) ce2n

(
π
2
; q
)
, p2n+1 = ce2n+1(0, q) ce′2n+1

(
π
2
; q
)
, (E.19)

s2n+2 = se′2n+2(0, q) se′2n+2

(
π
2
; q
)
, s2n+1 = se′2n+1(0, q) se2n+1

(
π
2
; q
)
. (E.20)

The second kind Bessel function product series are

Ke2n(η,−q) =
(−1)np2n

π
[
A

(2n)
0

]2

∞∑
r=0

A
(2n)
2r Ir(v1)Kr(v2), (E.21)

Ke2n+1(η,−q) =
(−1)ns2n+1

π
√
q
[
B

(2n+1)
1

]2

∞∑
r=0

B
(2n+1)
2r+1 [Ir(v1)Kr+1(v2)− Ir+1(v1)Kr(v2)] ,

(E.22)

Ko2n+1(η,−q) =
(−1)n+1p2n+1

π
√
q
[
A

(2n+1)
1

]2

∞∑
r=0

A
(2n+1)
2r+1 [Ir(v1)Kr+1(v2) + Ir+1(v1)Kr(v2)] ,

(E.23)

Ko2n+2(η,−q) =
(−1)n+1s2n+2

πq
[
B

(2n+2)
2

]2

∞∑
r=0

B
(2n+2)
2r+2 [Ir(v1)Kr+2(v2)− Ir+2(v1)Kr(v2)] . (E.24)
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Abramowitz and Stegun (1964) and Gutiérrez Vega et al. (2003) have tables re-

lating the radial Mathieu functions’ various names found in different publications.

Derivatives of MF are found by applying the derivative to the definitions; no sim-

ple recurrence relationships exist (see discussion in section E.1).
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Appendix F

QUASILINEAR INFILTRATION FROM AN ELLIPTICAL

CAVITY

F.1 Introduction

A solution for flow from a long elliptic cylinder cavity is given in two-dimensional

elliptical coordinates for the quasilinear (Philip, 1968) form of the steady unsat-

urated flow equation (Richards, 1931) in a homogeneous porous medium. The

solution is an extension of one by Philip (1984) for flow from a circular cylinder

cavity.

The approach taken here is to expand the linearized potential in the natural

eigenfunctions that arise in elliptical coordinates. This technique has been utilized

extensively in the physics literature (e.g., Stratton (1941, §6.12), Chu and Stratton

(1941), Morse and Feshbach (1953, p.1407–1432), Moon and Spencer (1961a), Ar-

scott (1964), and Kleinermann et al. (2002)), but the solution derived here for the

current problem’s boundary conditions is new.

Unsaturated porous media flow, specifically infiltration, is a very non-linear

process that is often solved numerically with finite element codes such as HYDRUS

(e.g., Skaggs et al. (2004)). Analytic solutions to infiltration problems, restricted as

they may be, often deliver more insightful results due to their simplicity. They

give solutions with fewer potentially complicating auxiliary parameters. Pullan

(1990) reviews the history of the quasilinear solution methodology and compares

numerous approaches for solving the linearized Richards equation.

In the context of predicting furrow infiltration, Rawls et al. (1990) compared

steady infiltration solutions for 1, 2, and 3 dimensions, using the 2D point source

solution of Philip (1968) in the comparison. The solution derived here for an el-
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liptical shape is more realistically furrow-shaped; ellipses have the capability of

simulating the geometry associated with either wide or deep cavities and strips,

rather than simple point approximations. Warrick et al. (2007) and Warrick and

Lazarovitch (2007) discuss the impacts that dimensionality and “edge effects” have

on infiltration from strips and parabolic-shaped furrows.

The elliptical solution derived here can represent the geometry of a strip or

furrow explicitly, although without surface or water table boundary effects. It is

a free-space solution, since it is valid at large distance. A dry far-field condition

is assumed, resulting in no-flow far away from the ellipse. Including the effects

of the land surface (potentially intersecting the ellipse) would require imposing

a no-flow boundary condition. This homogeneous type II boundary condition

would become an inhomogeneous type III boundary condition after applying the

required non-linear transformations (Wooding, 1968). A solution for flow from an

elliptical cavity that accounted for this boundary condition would most likely be

approximate in nature (e.g., a linearized AEM or gridded numerical solution). An

alternative approach would be to use the integral expression of Lomen and War-

rick (1978, eq.5) (with D = 0, and no dependence on Y or T ) to include the effects

of a horizontal evaporative or no-flow boundary. Similarly, Philip (1989) and War-

rick (2003, p.276) indicate how a water table condition can be accounted for with a

free-space solution. Using the solution derived here in these integral relationships

leads to integral expressions that cannot be evaluated in closed form for general

values of the coordinates.

Bakker and Nieber (2004b) applied the analytic element method to the quasi-

linear flow equation for the problem of uniform vertical flow through ellipses of

different material properties. Their approach is quite general, but to obtain a solu-

tion for multiple elements involves performing two nested iterations. A non-linear

boundary-matching iteration is nested within an outer iteration that accounts for

the effects elements have on one another. In the analysis presented here, no itera-
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tions are required to compute the solution, outside of those potentially needed to

compute the required Mathieu functions (also needed for the AEM solution).

Mathieu functions arise as solutions to the modified Helmholtz equation in

elliptic-cylinder coordinates (Morse and Feshbach (1953, p.562), Moon and Spencer

(1961b), Arscott and Darai (1981), and Ben-Menahem and Singh (2000, p.53)). We

use a modern matrix eigenvector approach (Stamnes and Spjelkavik, 1995; Chaos-

Cador and Ley-Koo, 2002), allowing all the required functions and coefficients to

be computed using any combination of widely available eigensolution (e.g., Mat-

lab (MathWorks, 2007) or LAPACK (Golub and van Loan, 1996)) and Bessel func-

tion routines.

F.2 Governing equation

F.2.1 Quasilinear flow equation

The steady-state unsaturated porous media flow equation (Richards, 1931) is

∇̂ ·
(
K(h)∇̂h

)
=
∂K

∂z
, (F.1)

where ∇̂ is the 2D spatial derivative operator,K(h) is hydraulic conductivity [L/T ],

a non-linear function of pressure head, h [L]. Flow is driven by gradients in hy-

draulic head, Φ = h−z, the sum of pressure and elevation heads (z positive down-

wards). Hats indicate the differential operators are dimensional. The Kirchhoff

transformation (Klute, 1952) is used to linearize (F.1); it is

Θ(h) =

∫ h

−∞
K(u) du, (F.2)

where u is a dummy variable and Θ is matric flux potential [L2/T ]. Applying (F.2)

and setting K(−∞) = 0, (F.1) becomes

∇̂2Θ =
1

K

dK

dh

∂Θ

∂z
. (F.3)
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The Gardner (1958) exponential hydraulic conductivity distribution is used to sim-

plify (F.3) further, by assuming the convenient relationship

K(h) = K0e
αh, (F.4)

where h < 0 for unsaturated flow, α is the sorptive number [1/L] (related to pore

size) and K0 is K at saturation. Using (F.4), the flow equation becomes

∇̂2Θ = α
∂Θ

∂z
, (F.5)

which is the quasilinear form of Richards’ equation, first extensively studied by

Philip (1968). Pullan (1990) summarizes the benefits and limitations related to the

quasilinear approximation.

F.2.2 Elliptical geometry

A long elliptical pipe is represented as a surface of constant elliptical radius in two-

dimensional elliptic cylinder coordinates, where the variation along the length of

the pipe is assumed negligible. For a horizontal ellipse, the major axis is parallel to

the land surface (x-axis) and the positive z-axis points down (see Figure F.1). The

elliptical angular coordinate starts at the positive x-axis and increases clockwise,

0 ≤ ψ ≤ 2π. The Cartesian coordinates (x, z) [L] for the horizontal ellipse are

defined in terms of the dimensionless elliptical coordinates (η, ψ) by

x = f cosh(η) cos(ψ), z = f sinh(η) sin(ψ), (F.6)

where f is the semi-focal distance [L]. The boundary of the cylinder is defined

as η = η0. The narrow dimension of the ellipse is twice the semi-minor axis, b =

f sinh(η0), while the wide dimension is twice the semi-major axis, a = f cosh(η0).

The eccentricity of the ellipse is a dimensionless quantity,

e =

√
1− b2

a2
, (F.7)
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FIGURE F.1. Elliptical cutout geometry and coordinate convention. η and ψ are
the elliptical radial and angular coordinates; a, b, and f are the semi-major, -minor,
and -focal lengths, respectively.

equivalently given as f = ea, that ranges from 0 (circle) to 1 (line segment join-

ing the foci). The pair (a, e) completely specifies the geometry of the problem; a is

a measure of the size of the cavity, while e is related to its shape. There are other

combinations of parameters that can equivalently specify the problem, for example

specifying (f, η0) or (a, b) is also possible. These other pairs of parameters, while

valid, have less physical meaning; they must be kept in a specified ratio to preserve

the size or shape of the problem, which comes naturally for the (a, e) combination.

Four ellipses, used in later examples, with a = 1 and different values of e are plot-

ted for comparison in Figure F.2, with their properties listed in Table F.1. Ellipses

with e < 0.5 appear to be circles, unless the two are plotted next to each other for

comparison.

e = f η0 b c
0 ∞ 1 2π

0.5 1.317 0.866 5.870
0.9 0.467 0.436 4.697
1 0 0 4

TABLE F.1. Parameters for ellipses in Figure F.2; a = 1

The circumference of the ellipse, c [L], cannot be evaluated exactly in closed

form; it is defined by an elliptic integral, but can be approximated using one of

several formulas. We use the simple YNOT expression (Maertens and Rousseau,
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FIGURE F.2. Comparison of ellipses with a = 1 and e = [0, 0.5, 0.9, 1]. See Table F.1
for corresponding elliptical coordinates.

2000)

c ≈ 4
y
√
ay + by, (F.8)

where y = ln(2)/ ln
(
π
2

)
and the error in the approximation is at most 0.4%.

F.2.3 Non-dimensionalizing

Because of the problem’s homogeneity, it can be made dimensionless with respect

to the sorptive number of the porous medium. Dimensionless lengths are defined

as
A

a
=
B

b
=
F

f
=
C

c
=
X

x
=
Z

z
=
α

2
, (F.9)

where capital letters are dimensionless versions of lower-case variables. The ma-

tric flux potential is non-dimensionalized by

ϑ =
Θ

Θ0

. (F.10)

where Θ0 = Θ(η0). The boundary condition on the ellipse is specified pressure

head or moisture potential (h is a constant and Φ is proportional to −z on the
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boundary),

h(η0) = h0 (F.11)

while for simplicity, the far-field boundary condition is no-flow,

h(η →∞) = −∞, Θ[h(η →∞)] = 0. (F.12)

The linearized flow equation (F.5) written in dimensionless form is

∇2ϑ = 2
∂ϑ

∂Z
(F.13)

with corresponding dimensionless boundary conditions of

ϑ(η0, ψ) = 1, ϑ(η →∞)→ 0. (F.14)

To eliminate the Z derivative we make an exponential substitution (Wooding,

1968),

ϑ = HeZ , (F.15)

which reduces (F.13) to the Yukawa (Duffin, 1971) or modified Helmholtz equation,

∇2H = H, (F.16)

subject to the boundary conditions

H(η0, ψ) =e−F sinh(η0) sin(ψ) = e−B sin(ψ), (F.17)

H(η →∞) =HeF sinh(η) sin(ψ) → 0, (F.18)

in terms of the elliptical coordinates. Specifying the boundary condition on the

ellipse as constant Φ rather than constant h results in the condition H(η0, ψ) =

exp [B sin(ψ)], but leads to positive h, which the quasilinear governing equation

cannot accommodate.

The dimensionless moisture potential, Ψ, and hydraulic head, Φ, are defined

and related to ϑ by

Ψ =
h

h− h0

= 1
2

ln(ϑ), Φ =
Φ

Φ− h0

= 1
2

ln(ϑ)− Z, (F.19)

where we take h0 = 0 for simplicity.



202

F.3 Solution via separation of variables

The dimensionless modified Helmholtz equation (F.16) in elliptical coordinates

(Moon and Spencer, 1961b, p.17) is

2

F 2 [cosh(2η)− cos(2ψ)]

(
∂2H

∂η2
+
∂2H

∂ψ2

)
= H. (F.20)

We perform separation of variables by substituting H(η, ψ) = R(η)Y (ψ), dividing

by H , separating everything dependent on η from terms dependent on ψ, then set-

ting both quantities equal to the separation constant, λ. The results are simplified

into the form of Mathieu’s differential equations,

d2R

dη2
= R (2q cosh(2η) + λ) , (F.21)

d2Y

dψ2
= −Y (2q cos(2ψ) + λ) . (F.22)

These are the radial (F.21) and angular (F.22) modified Mathieu equations (McLach-

lan, 1947). Here, λ is an eigenvalue chosen to make the angular solution, Y (ψ),

periodic for the specified value of the Mathieu parameter, q = −F 2/4. A negative

is used in the definition of q to put the equations into standard form. The solutions

to equations (F.21) and (F.22) are radial and angular modified Mathieu functions;

see Gutiérrez Vega et al. (2003) and Bakker and Nieber (2004b) for characteristic

functional plots. The periodic solution to (F.22) and the corresponding free-space

solution to (F.21) is

Y (ψ) = a0ce0(ψ;−q) +
∞∑
n=1

ancen(ψ;−q) + bnsen(ψ;−q), (F.23)

R(η) = c0Ke0(η;−q) +
∞∑
n=1

cnKen(η;−q) + dnKon(η;−q), (F.24)

where an, bn, cn, and dn are coefficients to determine and cen(ψ,−q) and sen(ψ,−q)

are the even and odd, nth-order, first-kind angular Mathieu functions of argument
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ψ and parameter −q. Historically, they were referred to as cosine-elliptic and sine-

elliptic, based on how they degenerate to trigonometric functions as q → 0 (see

Appendix A for definitions). Similarly, Ken(η,−q) and Kon(η,−q) are the even

and odd, nth-order, second-kind radial Mathieu functions of argument η and pa-

rameter −q. Radial Mathieu functions are analogous to modified Bessel functions,

degenerating to them as q → 0.

There are additional solutions to (F.21) and (F.22) not needed for the solution

of (F.20), including the non-periodic second-kind angular Mathieu functions and

the first-kind radial Mathieu functions (analogous to I Bessel functions) that grow

exponentially as η →∞. Modified Mathieu functions are by convention associated

with q < 0, but non-modified Mathieu functions can equivalently be used. This

equivalence is analogous to that between Bessel functions of imaginary argument

and modified Bessel functions of real argument.

The product of the solutions to the Mathieu equations is a solution to (F.20),

namely

H(η ≥ η0, ψ) =
∞∑
n=0

βn
Ken(η,−q)
Ken(η0,−q)

cen(ψ,−q) +
∞∑
n=1

γn
Kon(η,−q)
Kon(η0;−q)

sen(ψ;−q) (F.25)

where βn and γn are coefficients to determine and the radial Mathieu functions

are normalized by their value on the boundary of the ellipse. Expression (F.25)

simplifies to a generalized Fourier series expansion in the natural eigenfunctions

of the system (Churchill, 1972, §9) at η = η0,

H0(η0, ψ) = β0ce0(ψ;−q) +
∞∑
n=1

βncen(ψ;−q) + γnsen(ψ;−q). (F.26)

F.3.1 Determination of coefficients

The orthogonality of the angular Mathieu functions is derived from the orthog-

onality of their sine and cosine components (see McLachlan (1947) §2.19), which
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is ∫ 2π

0

cen(ψ, q)sem(ψ, q) dψ = 0 (F.27)

for any integer m, n. The orthogonality of the Mathieu functions then is∫ 2π

0

sen(ψ, q)sem(ψ, q) dψ =

∫ 2π

0

cen(ψ, q)cem(ψ, q) dψ = πδnm (F.28)

where δnm is the Kronecker delta and the two Mathieu functions share the same

real q. Multiplying (F.26) by each angular Mathieu function and integrating over

the domain, integral expressions for the coefficients are

βn =
1

π

∫ 2π

0

H0(η0, ψ)cen(ψ,−q) dψ, (F.29)

γn =
1

π

∫ 2π

0

H0(η0, ψ)sen(ψ,−q) dψ. (F.30)

Equation (F.31) is expanded using (F.17) and the definition of the modified angular

Mathieu functions (F.61–F.62) resulting in

β2n =
(−1)n

π

∞∑
r=0

(−1)rA
(2n)
2r

∫ 2π

0

e−B sin(ψ) cos(2rψ) dψ, (F.31)

β2n+1 =
(−1)n

π

∞∑
r=0

(−1)rB
(2n+1)
2r+1

∫ 2π

0

e−B sin(ψ) cos [(2r + 1)ψ] dψ. (F.32)

Using an integral definition for the modified Bessel function of the first kind (Wat-

son, 1944, §6.22), a phase shift of π/2, and a trigonometric identity, (F.31) simplifies

to

β2n = 2(−1)n
∞∑
r=0

A
(2n)
2r I2r(B), (F.33)

while (F.32) is zero for all integer r, based on symmetry. This infinite sum of I

Bessel functions (F.33) is equivalent to one of several definitions of the first-kind

radial Mathieu functions (F.68), further simplifying the coefficient expression to

β2n = 2p2nIe2n(η0;−q), (F.34)
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where p2n = A
(2n)
0 /ce2n

(
π
2
; q
)

is a normalization constant and the argument of the

I Bessel functions in (F.68) is ω = arcsinh(B/F ), which is simply ω = η0. Similarly,

the coefficients of the odd functions become

γ2n+1 =
(−1)n

π

∞∑
r=0

(−1)rA
(2n+1)
2r+1

∫ 2π

0

e−B sin(ψ) sin [(2r + 1)ψ] dψ (F.35)

= 2(−1)n+1

∞∑
r=0

A
(2n+1)
2r+1 I2r+1(B), (F.36)

= 2p2n+1Io2n+1(η0,−q) (F.37)

where due to symmetry the integral involving se2n+2 is zero for all integer r, and

p2n+1 =
√
qA

(2n+1)
1 /ce′2n+1

(
π
2
; q
)
, with the prime indicating differentiation with re-

spect to the argument.

Using (F.34) and (F.36), the solution for H from a horizontal ellipse is

H(η ≥ η0, ψ) ∼= 2
N−1∑
n=0

p2nIe2n(η0,−q)ce2n(ψ,−q) Ke2n(η,−q)
Ke2n(η0,−q)

+ p2n+1Io2n+1(η0,−q)se2n+1(ψ,−q) Ko2n+1(η,−q)
Ko2n+1(η0,−q)

. (F.38)

The approximation comes from truncating the infinite sum at 2N − 1 terms. The

first kind radial Mathieu functions can be evaluated using their identity as an in-

finite series of I Bessel functions of argument B, given in (F.33) and (F.36). These

Bessel functions have the same argument and therefore they can all be computed

recursively from the two values I0(B) and I1(B) using a backwards recurrence re-

lationship (Press et al., 2007, §5.4.1), as is done in most available Bessel function

libraries.

F.3.2 Limiting cases

Circular As the ellipse becomes a circle, [A,B] → R0, the dimensionless circular

radius. In this limit q → 0, then the eigenvector matrices, A
(2n)
2r and A

(2n+1)
2r+1 , become

purely diagonal (see Appendix B); each angular Mathieu function is comprised
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of only one harmonic (n = r). Therefore, the coefficients in r reduce to a single

term, I2n(B). The angular Mathieu functions become trigonometric functions and

both the odd and even radial Mathieu functions become modified Bessel functions.

The elliptical solution uses both even and odd angular (and corresponding radial)

functions due to the symmetry associated with the chosen coordinate convention.

The circular cylinder solution of Philip (1984) can readily be re-derived for the

coordinate system given in Figure F.1; this results in a circular solution that corre-

sponds to the degeneration of (F.38) as e→ 0,

H(R ≥ R0, φ) ∼=
K0(R)

K0(R0)
I0(R0) + 2

N−1∑
n=1

(−1)n
K2n(R)

K2n(R0)
I2n(R0) cos(2nφ)−

2
N−1∑
m=0

(−1)m
K2m+1(R)

K2m+1(R0)
I2m+1(R0) sin [(2m+ 1)φ] , (F.39)

where the cos(0) term is halved, Kn is the second-kind modified Bessel function,

R = rα/2 is the dimensionless radius, and φ is the angle (following the same con-

vention as ψ in Figure F.1, which is shifted π/2 from that used by Philip). The

integrals involving the odd orders cosine and the even orders of sine are zero by

symmetry for all integer values of n.

Numerically, (F.38) is ill-behaved as e → 0. The Mathieu functions do asymp-

totically become Bessel functions, but for e ≤ 0.01 the solution is more efficiently

and accurately approximated with (F.39).

Strip In the other limiting case, as the elliptical cylinder degenerates to a ribbon

or strip (e = 1, η0 = 0, and B = 0), the Ir(B) coefficients all become zero except

I0(0) = 1, leaving

H(η ≥ 0, ψ) ∼= 2
N−1∑
n=0

(−1)nA
(2n)
0 ce2n(ψ,−q)Ke2n(η,−q)

Ke2n(0,−q)
, (F.40)

which is the same form given by Tranter (1951) and used by Kucûk and Brigham

(1979) for the case of constant specified potential along an ellipse (not restricted to
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η0 = 0 in their cases). When B = 0, the boundary condition on the ellipse (F.17)

becomes constant, since there is no z-variation across the strip. Numerically, (F.40)

is well-behaved, as the radial Mathieu functions can be evaluated at η = 0 without

problems.

F.3.3 Modification for vertically oriented ellipse

Since the modified Helmholtz equation (F.16) is symmetric with respect to x and

z, the boundary conditions and back-transformation functions can be changed,

leading to the analogous solution for a vertically oriented ellipse (see Figure F.3).

The boundary condition for a vertical ellipse in terms of dimensionless matric flux

potential, analogous to (F.14), are

FIGURE F.3. Elliptical cutout geometry and coordinate convention for vertically-
oriented ellipse

ϑ̃(η0, ψ̃) = 1, H̃0(η0, ψ̃) = e−A cos(ψ̃), (F.41)

where a tilde indicates the variable is related to the vertically-oriented ellipse; the

far-field boundary condition remains unchanged. This boundary condition leads
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to modified expressions for the coefficients

β̃2n =
(−1)n

π

∞∑
r=0

(−1)rA
(2n)
2r

∫ 2π

0

e−A cos(ψ̃) cos(2rψ̃) dψ̃

= 2(−1)n
∞∑
r=0

(−1)rA
(2n)
2r I2r(A), (F.42)

= 2s2nIe2n(η0,−q),

β̃2n+1 =
(−1)n

π

∞∑
r=0

(−1)rB
(2n+1)
2r+1

∫ 2π

0

e−A cos(ψ̃) cos
[
(2r + 1)ψ̃

]
dψ̃

= 2(−1)n+1

∞∑
r=0

(−1)rB
(2n+1)
2r+1 I2r+1(A), (F.43)

= −2s2n+1Ie2n+1(η0,−q)

where symmetry results in the integrals involving sen being zero for all integer

values of r, s2n = A
(2n)
0 /ce2n (0; q) and s2n+1 =

√
qB

(2n+1)
1 /se′2n+1(0, q). The solution

for H̃ , analogous to (F.38), is

H̃(η̃ ≥ η0, ψ̃) ∼= 2
N−1∑
n=0

(−1)nsnIen(η0,−q)cen(ψ̃,−q) Ken(η̃,−q)
Ken(η0,−q)

, (F.44)

which is very analogous in form to equation 27 of Philip (1984).

This solution is then back-transformed to dimensionless Cartesian coordinates

using the modified definitions

ϑ̃ = H̃eX̃ , X̃ = F cosh(η̃) cos(ψ̃), Z̃ = F sinh(η̃) sin(ψ̃), (F.45)

where X̃ points downward (see Figure F.3). The dimensionless potentials are

Ψ̃ =
h̃

h̃− h0

=
1

2
ln(ϑ̃), Φ̃ =

Φ̃

Φ̃− h0

=
1

2
ln(ϑ̃)− X̃. (F.46)

The vertically-oriented solution (F.44) does not simplify in the limiting case η0 = 0,

due to its orientation; the source always has a boundary condition which varies

with X̃ .



209

F.4 Darcy flux along elliptical circumference

To determine the total flowrate, Q̂ [L3/T ], and the average flux, v [L/T ], across the

elliptical surface, the flux on the boundary of the ellipse is found, beginning with

the dimensional form of Darcy’s law,

v = −K(h)∇̂Φ, (F.47)

where v is the Darcy flux [L/T ]. Expressing the gradient operator in elliptical co-

ordinates (Moon and Spencer, 1961b) makes (F.47)

v =
−K(h)

f
√

1
2
(cosh(2η)− cos(2ψ))

(
∂Φ

∂η
eη +

∂Φ

∂ψ
eψ

)
, (F.48)

where e is a unit vector. For the horizontal ellipse, we substitute the definition of

hydraulic head in elliptical coorindates Φ = h−f sinh(η) sin(ψ), using the notation

ξ(η, ψ) =
√

1
2
(cosh(2η)− cos(2ψ)) , and taking the dot product with eη leads to the

following for the radial (η) component of the flux

v · eη =
K(h)

fξ(η, ψ)

[
f cosh(η) sin(ψ)− ∂h

∂η

]
. (F.49)

Evaluating (F.49) at η = η0, applying the Kirchhoff transformation (F.2), using the

Gardner exponential model, and non-dimensionalizing the flux leads to

V0 =
1

Fξ(η0, ψ)

{
2 sin(ψ)−

[
∂ϑ

∂η

]
η0

}
, (F.50)

where V0 = 2v(η0) ·eη/(Θ0α) and the subscript zero indicating the fluxes are evalu-

ated on the boundary of the ellipse. The derivative in (F.50) can be expanded using

the product rule as[
∂ϑ

∂η

]
η0

= eB sin(ψ)

{[
∂H

∂η

]
η0

+ A sin(ψ)H(η0)

}
, (F.51)

where H and its radial derivative are computed from (F.38).
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F.4.1 Average normal flux

Multiplying by the dimensionless metric coefficient Fξ(η0, ψ), the integral of (F.50)

over 0 ≤ ψ ≤ 2π represents the weighted average dimensionless normal flux across

the boundary of the ellipse, V 0. The metric coefficient is necessary in elliptical

coordinates, due to the non-constant nature of the metric coefficients which define

the coordinate system (Morse and Feshbach, 1953, §1.3); i.e., lines of constant ψ are

spaced closer together near ψ ∈ [0, π, 2π]. The dimensionless average normal flux

integral is found using the integral relationships from (F.31) and (F.36), along with

the following integral relations∫ 2π

0

eB sin(ψ) sin(ψ)ce2n(ψ,−q) dψ = 2π(−1)n
∞∑
r=0

A
(2n)
2r I′2r(B),

= 2πp2nIe′2n(η0,−q), (F.52)∫ 2π

0

eB sin(ψ) sin(ψ)se2n+1(ψ,−q) dψ = 2π(−1)n
∞∑
r=0

A
(2n+1)
2r+1 I′2r+1(B),

= 2πp2n+1Io′2n+1(η0,−q), (F.53)

which can be found using trigonometric product identities (Abramowitz and Ste-

gun, 1964, eq. 4.3.31 – 4.3.33), the Bessel function derivative recurrence relationship

2I′n(z) = In−1(z)+In+1(z), and definitions of the first-kind radial Mathieu functions

(see Appendix A). Combining these, the expression for the average normal flux at

the boundary of the ellipse is found to be

V 0
∼= −4π

N−1∑
n=0

[p2nIe2n(η0,−q)]2
Ke′2n(η0,−q)
Ke2n(η0,−q)

+ [p2n+1Io2n+1(η0,−q)]2
Ko′2n+1(η0,−q)
Ko2n+1(η0,−q)

(F.54)

−AIe2n(η0,−q)Ie′2n(z,−q)

−Ap2
2n+1Io2n+1(η0,−q)Io′2n+1(z,−q).

The total flowrate is Q = V 0C, where C is the dimensionless circumference of the

ellipse, given by (F.8) and (F.9).



211

WhenB = 0 and η0 = 0, the average flux due to the strip source (F.54) simplifies

to

V 0(η0 = 0) ∼= −4π
N−1∑
n=0

[
A

(2n)
0

]2 Ke′2n(0,−q)
Ke2n(0,−q)

. (F.55)

For the strip, the circumference is 4F and ξ(0, ψ) = |sin(ψ)|.

F.4.2 Normal flux for vertical ellipse

Beginning again with (F.48), but instead substituting Φ̃ = h̃ − f cosh(η̃) cos(ψ̃), the

expression for the dimensionless normal flux to the boundary for the vertical el-

lipse, analogous to (F.50), becomes

Ṽ0 =
1

Fξ(η0, ψ̃)

2 cos(ψ̃)−

[
∂ϑ̃

∂η̃

]
η0

 , (F.56)

where the derivative in (F.56) is, analogous to (F.51), expanded as[
∂ϑ̃

∂η̃

]
η0

= eA cos(ψ̃)


[
∂H̃

∂η̃

]
η0

+B cos(ψ̃)H̃(η0)

 . (F.57)

Following a similar procedure, the average flux on the vertically-oriented ellipse is

Ṽ 0
∼= −4π

N−1∑
n=0

[snIen(η0,−q)]2
Ke′n(η0,−q)
Ken(η0,−q)

−Bs2
nIen(η0,−q)Ie′n(w,−q), (F.58)

with the following simplification for a strip source,

Ṽ 0(η0 = 0) ∼= −4π
N∑
n=0

[snIen(η0,−q)]2
Ke′n(0,−q)
Ken(0,−q)

. (F.59)

F.5 Results and comparisons

Plots of dimensionless hydraulic head, Φ, and moisture potential, Ψ, contours for

the case of an horizontal elliptical-shaped source are given in Figure F.4 for e = 0.9,
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similar contours for the degenerate case of a line segment (e = 1) are given in

Figure F.5, while contours for the nearly-circular case (e = 0.01) are presented in

Figure F.6. The difference between the circular and elliptical cases when e = 0.01

and A = R = 1.0 is less than 1.5 × 10−5 units of dimensionless moisture potential.

Above the cutout (Z < −B), the circular solution is slightly larger, and slightly

smaller below.
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FIGURE F.4. Contours of dimensionless hydraulic head, Φ, (left) and moisture
potential, Ψ, (right) for horizontal ellipse (A = 1.0, e = 0.9)

For the horizontal strip source (Figure F.5), the specified h boundary condition

is a constant (like Tranter (1951) and Kucûk and Brigham (1979)), because the entire

element has the same elevation, z = 0. For both the elliptical- (Figure F.4) and

circular-shaped (Figure F.6) cavities, the variation in Φ along the boundary of the

source can be seen in the contours.

Analogously, for vertical ellipses, Figures F.7 and F.8 show contours of Φ̃ and

Ψ̃ for the elliptical and slit cases respectively. Unlike the horizontal ellipse, the

solution for the degenerate slit (the line segment −1 ≤ X̃ ≤ 1) does not simplify

the boundary condition.
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FIGURE F.5. Contours of dimensionless hydraulic head, Φ, (left) and moisture
potential, Ψ, (right) head for horizontal strip (A = 1.0, e = 1.0)

For plotting contour maps, such as Figures F.4–F.8, a great deal of effort can be

saved if the solution is computed on a “separated” elliptical mesh (Orszag, 1986).

The angular Mathieu functions are computed for a vector of ψ and the radial Math-

ieu functions are computed for a vector of η, then they are combined in an outer-

product sense. Many plotting programs can accommodate a non-Cartesian mesh,

facilitating the use of this strategy. The dimensionless flowrate, Q = CV 0, is plot-

ted on semi-log and log-log scales in Figure F.9 for ranges of dimensionless semi-

width, A, and eccentricity, e. For a given size, there is more water flowing from the

circular cavity due to the greater surface area normal to flow. A horizontal ellipse

(solid lines) deviates less from the circular solution (highest dash-dot line) than an

equivalent vertical ellipse (dotted lines). This can also be seen comparing the loca-

tion of the −0.25 Ψ contour in Figures F.4–F.8; the vertical strip is smallest, while

the circular cutout is largest. For ellipses where e ≤ 0.5 the difference between the

flowrate for the circular and elliptical cases is small; this is expected, based on their

similar shapes (Figure F.2).
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FIGURE F.6. Contours of dimensionless hydraulic head,Φ, (left) and moisture po-
tential, Ψ, (right) for nearly circular ellipse (A = 1.0, e = 0.01)

Second-degree rational polynomials were fitted in a least-squares sense; the

error in the approximation is illustrated in Figure F.10, with the coefficients of the

polynomials given in Table F.2. The polynomial regression is performed in log-log

space, where the curves take the form

log10 [Q(A)] =
c0 + c1 log10(A) + c2 [log10(A)]2

1 + c3 log10(A)
. (F.60)

circular horizontal ellipse vertical ellipse
e 0 1 0.9 0.5 1 0.9 0.5
c0 1.7054 1.2021 1.3975 1.6344 1.0991 1.3364 1.6199
c1 2.3638 2.1901 2.2727 2.3411 2.1291 2.3231 2.3636
c2 -0.2747 -0.8789 -0.5527 -0.3298 -0.7294 -0.3172 -0.2678
c3 -0.1700 -0.4488 -0.2977 -0.1951 -0.3603 -0.1813 -0.1651

TABLE F.2. Rational polynomial regression coefficients for Q(A) in (F.60)

The distribution of V0 along the boundary of the ellipse, as a function of ψ, for

different values ofA, is given in Figures F.11 and F.12 for the horizontal and vertical
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FIGURE F.7. Contours of dimensionless hydraulic head, Φ̃, (left) and moisture
potential, Ψ̃, (right) for vertical ellipse (A = 1.0, e = 0.9)

cases, respectively. For the larger cavity, the variation of flux along the circumfer-

ence of the cavity is greater, due to the boundary condition that is a function of the

vertical coordinate.

F.6 Summary

We derived a 2D solution in elliptic-cylinder coordinates for Richards’ equation, il-

lustrating its degeneration to the strip and circular cases. Infinite series expressions

for the flowrate and flux from the elliptical cutout were also derived. The solutions

are in terms of the eigenfunctions for elliptical coordinates, which themselves can

be computed from infinite series of the eigenfunctions for polar coordinates.

Although the solutions developed herein are for free space, they represents

strip and furrow geometries more realistically than the widely used point (Philip,

1968) or circular (Philip, 1984) solutions. To incorporate boundary conditions on

horizontal surfaces, approximate boundary-matching techniques must be used
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FIGURE F.8. Contours of dimensionless hydraulic head, Φ̃, (left) and moisture
potential, Ψ̃, (right) for vertical strip (A = 1.0, e = 1.0)

(e.g., those used by Bakker and Nieber (2004b)). The general solution (F.25) is in the

form of an AEM solution, but the final forms (F.38 or F.44) only have two free pa-

rameters beyond the geometry (α and h0); flexible AEM elements commonly have

many more. Analytic solutions usually have fewer free parameters than elements

in AEM do, but this is what makes them simpler to use.

A short Matlab script which computes the required Mathieu functions and eval-

uates the dimensionless potentials and fluxes is available from the corresponding

author upon request.
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F.7 Appendix F1

The modified angular Mathieu functions are defined as infinite series of trigono-

metric functions (see McLachlan (1947, §2.18)),

ce2n(ψ,−q) = (−1)n
∞∑
r=0

(−1)rA
(2n)
2r cos[2rψ], (F.61)

ce2n+1(ψ,−q) = (−1)n
∞∑
r=0

(−1)rB
(2n+1)
2r+1 cos[(2r + 1)ψ], (F.62)

se2n+1(ψ,−q) = (−1)n
∞∑
r=0

(−1)rA
(2n+1)
2r+1 sin[(2r + 1)ψ], (F.63)

se2n+2(ψ,−q) = (−1)n
∞∑
r=0

(−1)rB
(2n+2)
2r+2 sin[(2r + 2)ψ], (F.64)

where A
(n)
r and B

(n)
r are matrices of the Mathieu coefficients (eigenvectors for each

eigenvalue λn), they are the generalized Fourier series coefficients representing

the Mathieu functions; see Appendix B. The integer n is related to the number of

zeros the function has on the 0 ≤ ψ < 2π interval. The even-ordered functions

have period π, while the odd-order functions have period 2π. The symmetry of

these functions with respect to the major and minor axes of the ellipse are listed in

Table F.3, from McLachlan (1947, §16.12).

major minor
ce2n even even

ce2n+1 even odd
se2n+1 odd even
se2n+2 odd odd

TABLE F.3. Symmetry of angular Mathieu functions about the axes of an ellipse.

The radial modified Mathieu functions of the second kind are used as solutions

to the radial Mathieu equation (F.21) and are only evaluated in ratios of functions

of the same kind and order, allowing them to be simplified from their definitions
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in terms of Bessel function product series (McLachlan, 1947, §13.30),

Ke2n(η,−q) = Dn

∞∑
r=0

A
(2n)
2r Ir(v1)Kr(v2), (F.65)

Ke2n+1(η,−q) = Dn

∞∑
r=0

B
(2n+1)
2r+1 [Ir(v1)Kr+1(v2)− Ir+1(v1)Kr(v2)] , (F.66)

Ko2n+1(η,−q) = Dn

∞∑
r=0

A
(2n+1)
2r+1 [Ir(v1)Kr+1(v2) + Ir+1(v1)Kr(v2)] , (F.67)

where Dn is a normalization constant (not all the same) that is only a function of

the order, v1 =
√
qe−η, v2 =

√
qeη, and the eigenvectors A

(n)
r and B

(n)
r are the same

used in the angular Mathieu function definitions. The normalization constants can

be found in McLachlan (1947, p.368).

The integral expressions evaluate to radial Mathieu functions of the first kind,

when they are given in one of their several equivalent solutions in terms of Bessel

function series (McLachlan, 1947, §8.30)

Ie2n(ω,−q) = (−1)n
ce2n

(
π
2
; q
)

A
(2n)
0

∞∑
r=0

A
(2n)
2r I2r [2

√
q sinh(ω)] (F.68)

Ie2n(ω,−q) = (−1)n
ce2n(0, q)

A
(2n)
0

∞∑
r=0

(−1)rA
(2n)
2r I2r [2

√
q cosh(ω)] (F.69)

Ie2n+1(ω,−q) = (−1)n
se′2n+1(0, q)
√
qB

(2n+1)
1

∞∑
r=0

(−1)rB
(2n+1)
2r+1 I2r+1 [2

√
q cosh(ω)] (F.70)

Io2n+1(ω,−q) = (−1)n+1 ce′2n+1

(
π
2
; q
)

√
qA

(2n+1)
1

∞∑
r=0

A
(2n+1)
2r+1 I2r+1 [2

√
q sinh(ω)] (F.71)

In general, radial Mathieu functions can be expressed in terms of infinite sums

of hyperbolic trigonometric functions, Bessel functions with hyperbolic trigono-

metric arguments (F.68–F.71), or series of products of Bessel functions (F.65–F.67).

The series of Bessel function products have the widest and fastest convergence

(Gutiérrez Vega et al., 2003), and are therefore the most utilized; in the current case

the alternate definitions are only used for simplifying the infinite sums of Bessel

functions.
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F.8 Appendix F2

Alhargan (2000b) has published C++ routines for evaluating Mathieu functions

based on the more efficient but less widely applicable continued fraction expansion

method. These routines utilize a different normalization scheme than (F.28) and are

only valid for small Mathieu parameter (q ≤ 4n). To evaluate (F.38) or (F.44) it is

straightforward to use the more general matrix formulation with available matrix

solution software (Chaos-Cador and Ley-Koo, 2002), which is valid for any q, even

negative or complex values.

The matrices for which the eigenvalues are computed are derived from the 3-

term recurrence relationship obtained by substituting the Mathieu function defini-

tions (F.61–F.64) into the angular Mathieu equation (F.22); the details of the process

can be found in Green and Michaelson (1965) or Delft Numerical Analysis Group

(1973). The main and off-diagonals of the infinite matrices, from which the eigen-

values and eigenvectors are computed, are

Aev =

[
0 4 16 . . . (2r)2 . . .√
2q q q . . . q . . .

]
, (F.72)

Aod =

[
1− q 9 25 . . . (2r + 1)2 . . .
q q q . . . q . . .

]
, (F.73)

Bod =

[
1 + q 9 25 . . . (2r + 1)2 . . .
q q q . . . q . . .

]
, (F.74)

where A
(2n)
2r is the matrix of eigenvectors from the symmetric tri-diagonal matrix

composed of the diagonal (first row) and the off-diagonals (second row) of Aev.

Similarly, Aod leads to A
(2n+1)
2r+1 and Bod leads to B

(2n+1)
2r+1 ; B

(2n+2)
2r+2 are not needed for

the current problem.

The matrices (F.72–F.74) and the eigenvector matrices derived that are from

them A
(n)
r ,B

(n)
r are infinite matrices that must be truncated; for most problems

20 coefficient delivers adequate accuracy. If N = 20, then N + k ≤ 30 is also suffi-

cient. Ellipses of very long aspect ratio (large F , small η0) may require more terms,
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but the calculations remain trivial on a desktop computer. For the application con-

sidered here, when A ≤ 2, the expansion of the boundary condition in angular

Mathieu functions is very accurate.

Since eigenvectors only define a direction, they must be normalized to have a

length consistent with convention. Two normalization schemes are popular, the

one used here is attributed to McLachlan (1947, §2.21). It consists of specifying the

norms to be 1/π (simplifying the expressions for β2n and γ2n+1), while the other

normalization, attributed to Morse and Feshbach (1953, p.1409) sets the value or

slope of the angular functions at ψ ∈ [0, π/2] to unity. This alternate normalization

(used by Alhargan (2000b)) instead simplifies the expression for the normalization

constant in the radial Mathieu functions, e.g., the coefficients outside the summa-

tion in (F.68–(F.71)).

If LAPACK routines (or equivalently Matlab calls to eig()) are used to com-

pute the eigenvector matrices, only the first eigenvector of A
(2n)
2r must be re-scaled.

The solution for ce0(ψ,−q) is normalized so it degenerates to cos(0) as q → 0. This

requires the normalization be

2
[
A

(0)
0

]2

+
∞∑
r=1

[
A(0)
r

]2
= 1, (F.75)

where the zero-order term is included twice.
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I. Janković, A. Fiori, and G. Dagan. Flow and transport in highly heterogeneous
formations: 3. numerical simulations and comparison with theoretical results.
Water Resources Research, 39:1270–1283, 2003.

H. Jeffreys and B. S. Jeffreys. Methods of Mathematical Physics. Cambridge, third
edition, 1972.

O. D. Kellogg. Foundations of Potential Theory. Dover, 1954.

V. A. Kelson, R. J. Hunt, and H. M. Haitjema. Improving a regional model us-
ing reduced complexity and parameter estimation. Ground Water, 40(2):132–143,
2002.

F. Kleinermann, N. J. Avis, and F. A. Alhargan. Analytical solution to the three-
dimensional electrical forward problem for an elliptical cylinder. Physiological
Measurement, 23:141–147, 2002.

A. Klute. A numerical method for solving the flow equation for water in unsatu-
rated materials. Soil Science, 73:105–116, 1952.

S. R. Kraemer. Analytic element ground water modeling as a research program
(1980 to 2006). Ground Water, 45(4):402–408, 2007.

S. R. Kraemer, H. M. Haitjema, and V. A. Kelson. Working with WhAEM2000 capture
zone delineation for a city wellfield in a valley fill glacial outwash aquifer supporting
wellhead protection. US Environmental Protection Agency, 2007.
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