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Introduction

The LT-AEM — like the AEM developed by Otto Strack — falls somewhere
in between gridded methods (e.g., finite element (FEM)) and fully analytic so-
lutions (e.g., Theis solution). It can be thought of as a flexible quasi-analytic
solution which can be easily adjusted for different conditions or situations; the
LT-AEM is similar in philosophy to the boundary element method (BEM).

The Laplace transform is used to remove the time derivative from the gov-
erning groundwater flow equation (the diffusion equation), giving the modified
Helmholtz equation in the Laplace domain:
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where Φ is discharge potential (Φ = Kh), α is hydraulic diffusivity (α =
K/Ss), Φ0 is the initial condition (set to zero to make the equation homo-
geneous), p is the Laplace parameter, and the over-bar indicates a Laplace
transformed variable.

Fig. 1: Laplace Transform Analytic Element Method (LT-AEM) flowchart

The time solution is estimated with several AEM solutions, for different values
of p, using a numerical inverse Laplace transform algorithm to approximate
the Bromwich contour integral. Since p is a parameter, these calculations can
be carried in any order or on any processor — making parallel computations
easy to implement.

LT-AEM elements can be active or passive. Passive elements have their
strength specified independent of the other elements in the problem; active
elements depend on the behavior of elements throughout the domain.

LT-AEM process

1. Define transient elements which compose problem:
e.g., wells → points, rivers → lines, areas of recharge → circles or ellipses;

2. Pose problem in Laplace space: L [Φ(t)] = Φ̄(p);

3. Calculate each passive element’s effect explicitly:
e.g., drawdown due to pumping well at constant Q;

4. Calculate each active element’s strength iteratively:
e.g., a line source which keeps head at sin(t);

5. Use superposition in Laplace space to find total solution,
Φ̄total(p) =

∑
Φ̄ellipse(p) +

∑
Φ̄circle(p) +

∑
Φ̄line(p) + . . .;

6. Numerically invert total solution: L−1
[

Φ̄(p)
]

= Φ(t);

Elliptical Elements

Furman and Neuman developed the LT-AEM point and circle elements as
a proof of concept of the method [1]. LT-AEM elements use a collocation
approach to match conditions approximately at element boundaries, while
the elements themselves are chosen to satisfy the PDE exactly throughout
the domain (like in BEM).

Fig. 2: Matching (collocating) points along elements can be used to match h and
∂Φ/∂n between regions of different properties or specify arbitrary boundary conditions.

Using separation of variables, the domains in-
side and outside an element are represented
by the natural eigenfunctions for that shape.
Ellipses and finite line segments (which can
be considered degenerate ellipses) are natural
in elliptical coordinates (see Figure at right).
In these coordinates the Helmholtz equa-
tion has modified radial and angular Mathieu
functions as eigenfunctions.

For example, to represent the effect of an elliptical recharge area having
different hydraulic conductivity, the total head and total normal flux are
matched along the boundary of the ellipse. The total discharge potential,
Φ̄±

total = Φ̄±
ellipse +

∑
Φ̄±

background, is the sum of the effects of the current element
and all the elements in the background (+ outside and − inside the ellipse).
The following matching equations are posed at points along the boundary of
the elements (blue and red points in Figure 2):
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where η0 is the boundary of the ellipse and Φ̄−
part is the particular solution asso-

ciated with the areal recharge flux inside the element (the non-homogeneous
term in 1). The following expressions for the current ellipse are obtained
through separation of variables,

Φ̄+
ellipse(η ≥ η0, ψ) =

∞∑

ν=0

aν ceν(q, ψ) Keν(q, η) +

∞∑

ν=1

bν seν(q, ψ) Koν(q, η),

Φ̄−
ellipse(η ≤ η0, ψ) =

∞∑

ν=0

cν ceν(q, ψ) Ieν(q, η) +

∞∑

ν=1

dν seν(q, ψ) Ioν(q, η), (3)

where the functions ce and se are analogous to sin and cos, while Ie, Io, Ke
and Ko are even and odd analogs to the modified Bessel functions, I and K.
The parameter, q = (f 2p)/(2α), is related to aquifer properties and the shape
of the ellipse.

Substituting the expressions for Φ±
ellipse and their derivatives into (2) allows

estimating the unknown coefficients aν, bν, cν and dν using least-squares, by
posing the matching expressions (2) at more points than there are unknowns
in (3). If the background elements, Φ̄±

background, are also active, estimating
the parameters of each becomes a non-linear problem (each active element
depending on the strength of every other element), which can be solved quickly
using fixed-point iteration.
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These figures illustrate a line source with strength constant in space and
time, simulated using elliptical elements (η0 = 0, f = 0.35). The benefit of
representing lines as ellipses is generality, nearly any variation in space or time
can be represented.

LT-AEM Applications

Since an LT-AEM simulation for simple flow problems is fast and accurate,
the approach makes a good learning tool. Cutting a homogeneous rectangular
domain into hundreds of square elements to see the response from a line or
point source (as would be done with MODFLOW) isn’t really an intuitive
way to visualize what is going on. Instructional use, “what-if” planning —
moving wells around in a wellfield to examine their cumulative effects — or
the testing phase before a larger gridded modeling project would all capitalize
on strengths of the LT-AEM.

LT-AEM models could also be coupled with FDM or FEM models to uti-
lize the benefits of each method. Since the LT-AEM deals with “infinite”
domains or distant boundaries quite naturally (without hundreds of inter-
vening elements), a study-area gridded model could be surrounded by an
LT-AEM model (like grid telescoping); the LT-AEM would provide boundary
conditions for the study-area model.

Future Work & Support

The LT-AEM is already implemented as a working Fortran95 program; there-
fore the current effort is development of new LT-AEM elements, which can
be used to build more general transient groundwater flow models. The final
product of this research will be a general groundwater modeling environment
with a friendly graphical interface (such as that already developed by our
USGS collaborator, Paul Hsieh, in Menlo Park, CA).

The project is supported through fellowships and the USGS-NIWR pro-
gram. Additional financial support is provided by the C.W. and Modene
Neely foundation through the National Water Resource Institute (NWRI) in
Fountain Valley, CA.
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