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Abstract8

We develop analytic solutions to the linearized steady-state Richards equation for9

head and total flowrate due to an elliptic cylinder cavity with a specified pressure10

head boundary condition. They are generalizations of the circular cylinder cavity11

solutions of Philip (1984). The circular and strip sources are limiting cases of the12

elliptical cylinder solution, derived for both horizontally- and vertically-aligned el-13

lipses. We give approximate rational polynomial expressions for total flowrate from14

an elliptical cylinder over a range of sizes and shapes. The exact elliptical solution15

is in terms of Mathieu functions, which themselves are generalizations of and com-16

puted from trigonometric and Bessel functions. The required Mathieu functions are17

computed from a matrix eigenvector problem, a modern approach that is straight-18

forward to implement using available linear algebra libraries. Although less efficient19

and potentially less accurate than the iterative continued fraction approach, the20

matrix approach is simpler to understand and implement and is valid over a wider21

parameter range.22
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1 Introduction25

A solution for flow from a long elliptic cylinder cavity is given in two-dimensional26

elliptical coordinates for the quasilinear (Philip, 1968) form of the steady un-27

saturated flow equation (Richards, 1931) in a homogeneous porous medium.28
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The solution is an extension of one by Philip (1984) for flow from a circular29

cylinder cavity.30

The approach taken here is to expand the linearized potential in the natural31

eigenfunctions that arise in elliptical coordinates. This technique has been32

utilized extensively in the physics literature (e.g., Stratton (1941, §6.12), Chu33

and Stratton (1941), Morse and Feshbach (1953, p.1407–1432), Moon and34

Spencer (1961a), Arscott (1964), and Kleinermann et al. (2002)), but the35

solution derived here for the current problem’s boundary conditions is new.36

Unsaturated porous media flow, specifically infiltration, is a very non-linear37

process that is often solved numerically with finite element codes such as38

HYDRUS-2D (e.g., Skaggs et al. (2004)). Analytic solutions to infiltration39

problems, restricted as they may be, often deliver more insightful results due to40

their simplicity. They give solutions with fewer potentially complicating auxil-41

iary parameters. Pullan (1990) reviews the history of the quasilinear solution42

methodology and compares numerous approaches for solving the linearized43

Richards equation.44

In the context of predicting furrow infiltration, Rawls et al. (1990) compared45

steady infiltration solutions for 1, 2, and 3 dimensions, using the 2D point46

source solution of Philip (1968) in the comparison. The solution derived here47

for an elliptical shape is more realistically furrow-shaped; ellipses have the ca-48

pability of simulating the geometry associated with either wide or deep cavities49

and strips, rather than simple point approximations. Warrick et al. (2007) and50

Warrick and Lazarovitch (2007) discuss the impacts that dimensionality and51

“edge effects” have on infiltration from strips and parabolic-shaped furrows.52

The elliptical solution derived here can represent the geometry of a strip or53

furrow explicitly, although without surface or water table boundary effects. It54

is a free-space solution, since it is valid at large distance. A dry far-field con-55

dition is assumed, resulting in no-flow far away from the ellipse. Including the56

effects of the land surface (potentially intersecting the ellipse) would require57

imposing a no-flow boundary condition. This homogeneous type II boundary58

condition would become an inhomogeneous type III boundary condition after59

applying the required non-linear transformations (Wooding, 1968). A solution60

for flow from an elliptical cavity that accounted for this boundary condition61

would most likely be approximate in nature (e.g., a linearized AEM or gridded62

numerical solution). An alternative approach would be to use the integral ex-63

pression of Lomen and Warrick (1978, eq.5) (with D = 0, and no dependence64

on Y or T ) to include the effects of a horizontal evaporative or no-flow bound-65

ary. Similarly, Philip (1989) and Warrick (2003, p.276) indicate how a water66

table condition can be accounted for with a free-space solution. Using the so-67

lution derived here in these integral relationships leads to integral expressions68

that cannot be evaluated in closed form for general values of the coordinates.69
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Bakker and Nieber (2004) applied the analytic element method to the quasi-70

linear flow equation for the problem of uniform vertical flow through ellipses71

of different material properties. Their approach is quite general, but to obtain72

a solution for multiple elements involves performing two nested iterations. A73

non-linear boundary-matching iteration is nested within an outer iteration74

that accounts for the effects elements have on one another. In the analysis75

presented here, no iterations are required to compute the solution, outside76

of those potentially needed to compute the required Mathieu functions (also77

needed for the AEM solution).78

Mathieu functions are the special functions that arise as solutions to the79

Helmholtz equation in elliptic-cylinder coordinates (Morse and Feshbach (1953,80

p.562), Moon and Spencer (1961b), Arscott and Darai (1981), and Ben-Menahem81

and Singh (2000, p.53)). We use a modern matrix eigenvector approach (Stamnes82

and Spjelkavik, 1995; Chaos-Cador and Ley-Koo, 2002), allowing all the re-83

quired functions and coefficients to be computed using any combination of84

widely available eigensolution (e.g., Matlab (MathWorks, 2007) or LAPACK85

(Golub and van Loan, 1996)) and Bessel function routines.86

2 Governing equation87

2.1 Quasilinear flow equation88

The steady-state unsaturated porous media flow equation (Richards, 1931) is89

∇̂ ·
(
K(h)∇̂h

)
=
∂K

∂z
, (1)

where K(h) is hydraulic conductivity [L/T ], a non-linear function of pressure90

head, h [L]. Flow is driven by gradients in hydraulic head, Φ = h−z, the sum91

of pressure and elevation heads (z positive down). Hats indicate dimensional92

differential operators. The Kirchhoff transformation (Klute, 1952) is used to93

linearize (1); it is94

Θ(h) =
∫ h

−∞
K(u) du, (2)

where u is a dummy variable and Θ is matric flux potential [L2/T ]. Applying95

(2) leads to96

∇̂2Θ =
1

K

dK

dh

∂Θ

∂z
. (3)

The Gardner (1958) exponential K(h) distribution is used to simplify (3)97

further, by assuming the linearizing relationship K(h) = K0e
αh, where h < 098

for unsaturated flow, α is the sorptive number [1/L] (related to pore size) and99
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K0 is K at saturation. With the Gardner distribution, (3) becomes100

∇̂2Θ = α
∂Θ

∂z
, (4)

the steady quasilinear form of Richards’ equation. The quasilinear approxima-101

tion was first extensively studied by Philip (1968); Pullan (1990) summarizes102

its benefits and limitations.103

2.2 Elliptical geometry104

A long elliptical pipe is represented as a surface of constant radius in two-105

dimensional elliptic-cylinder coordinates, where the variation along the length106

of the pipe is negligible. For a horizontal ellipse, the major axis is parallel107

to the land surface and the positive z-axis points down (see Figure 1). The108

elliptical angular coordinate starts at the positive x-axis and increases clock-109

wise, 0 ≤ ψ ≤ 2π. Cartesian coordinates (x, z) [L] are defined in terms of the110

dimensionless elliptical coordinates (η, ψ) as111

x = f cosh(η) cos(ψ), z = f sinh(η) sin(ψ), (5)

where f is the semi-focal distance [L]; the cylindrical boundary is η = η0. The112

eccentricity of the ellipse is a dimensionless quantity,113

e =

√

1 − b2

a2
, (6)

equivalently given as f = ea, that ranges from 0 (circle) to 1 (line segment114

joining the foci). The pair (a, e) completely specifies the geometry of the prob-115

lem; a is a measure of the size of the cavity, while e is related to its shape. The116

circumference of the ellipse, c [L], cannot be evaluated exactly in closed form.117

It is defined by an elliptic integral, but can be approximated using one of sev-118

eral formulas. We use the simple YNOT expression (Maertens and Rousseau,119

2000)120

c ≈ 4
y
√
ay + by, (7)

where y = ln(2)/ ln
(
π
2

)
and the error in the approximation is at most 0.4%.121

2.3 Non-dimensionalizing122

Because of the problem’s homogeneity, it can be made dimensionless with123

respect to the porous medium’s sorptive number. Dimensionless lengths are124

defined125

A

a
=
B

b
=
F

f
=
C

c
=
X

x
=
Z

z
=
α

2
, (8)
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where capital letters are dimensionless versions of lower-case variables. The126

dimensionless matric flux potential is ϑ = Θ/Θ(η0). The boundary condition127

on the ellipse is specified pressure head, h(η0) = h0. For simplicity, the far-field128

boundary condition is no-flow,129

h(η → ∞) = −∞, Θ[h(η → ∞)] = 0; (9)

this corresponds to an assumption of dry conditions away from the cutout,130

i.e., the flow field is dominated by the moisture infiltrating from the ellipse.131

The linearized flow equation (4) in dimensionless form, after the exponen-132

tial substitution ϑ = HeZ , becomes the Yukawa (Duffin, 1971) or modified133

Helmholtz equation,134

∇2H = H ; (10)

(10) is subject to the boundary conditions135

H(η0, ψ) =e−F sinh(η0) sin(ψ) = e−B sin(ψ), (11)

H(η → ∞) =HeF sinh(η) sin(ψ) → 0, (12)

in elliptical coordinates. Many solutions to (10) are available in the physics136

literature, though the combination of boundary condition (11) and elliptical137

geometry makes the solution derived here unique.138

The dimensionless pressure (Ψ) and hydraulic (Φ) heads are defined and re-139

lated to ϑ by140

Ψ =
h

h− h0
= 1

2
ln(ϑ), Φ =

Φ

Φ − h0
= 1

2
ln(ϑ) − Z, (13)

where we take h0 = 0 for simplicity.141

3 Solution via separation of variables142

The dimensionless modified Helmholtz equation (10) in elliptical coordinates143

(Moon and Spencer, 1961b, p.17) is144

2

F 2 [cosh(2η) − cos(2ψ)]

(
∂2H

∂η2
+
∂2H

∂ψ2

)
= H. (14)

We perform separation of variables by substituting H(η, ψ) = R(η)Y (ψ), di-145

viding by H , separating terms dependent on η from those dependent on ψ,146

and setting both quantities equal to the separation constant, λ; this results in147

d2R

dη2
= R (2q cosh(2η) + λ) , (15)
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148

d2Y

dψ2
= −Y (2q cos(2ψ) + λ) . (16)

These are the radial (15) and angular (16) modified Mathieu equations (McLach-149

lan, 1947). Here, λ is an eigenvalue chosen to make the angular solution, Y (ψ),150

periodic for the specified value of the Mathieu parameter, q = −F 2/4. The151

solutions to equations (15) and (16) are radial and angular modified Mathieu152

functions; see Alhargan (2000), Gutiérrez Vega et al. (2003), or Bakker and153

Nieber (2004) for characteristic functional plots. The periodic solution to (16)154

and the corresponding free-space solution to (15) is155

Y (ψ) = a0ce0(ψ;−q) +
∞∑

n=1

ancen(ψ;−q) + bnsen(ψ;−q), (17)

R(η) = c0Ke0(η;−q) +
∞∑

n=1

cnKen(η;−q) + dnKon(η;−q), (18)

where an, bn, cn, and dn are coefficients to determine and cen(ψ;−q) and sen(ψ;−q)156

are the even and odd, nth-order, first-kind angular Mathieu functions of ar-157

gument ψ and parameter −q. These functions degenerate to trigonometric158

functions as q → 0 (see Appendix A for definitions). Similarly, Ken(η;−q)159

and Kon(η;−q) are the even and odd, nth-order, second-kind radial Math-160

ieu functions of argument η and parameter −q. Radial Mathieu functions are161

analogous to modified Bessel functions, degenerating to them as q → 0.162

The product of solutions to the Mathieu equations is a solution to (14),163

H(η ≥ η0, ψ) =
∞∑

n=0

βn
Ken(η;−q)
Ken(η0;−q)

cen(ψ;−q) +
∞∑

n=1

γn
Kon(η;−q)
Kon(η0;−q)

sen(ψ;−q)

(19)
where βn and γn are coefficients to determine and the radial Mathieu functions164

are normalized by their value on the boundary of the ellipse. Cross-products165

involving both odd and even functions are not considered because theses so-166

lutions correspond to different eigenvalues, which may only be combined via167

summation. At η = η0, (19) simplifies to168

H0(η0, ψ) = β0ce0(ψ;−q) +
∞∑

n=1

βncen(ψ;−q) + γnsen(ψ;−q). (20)

3.1 Determination of coefficients169

The orthogonality of the angular Mathieu functions is derived from the or-170

thogonality of their sine and cosine components (McLachlan, 1947, §2.19);171
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∫ 2π
0 cen(ψ; q)sem(ψ; q) dψ = 0 for any m,n, while172

∫ 2π

0
sen(ψ; q)sem(ψ; q) dψ =

∫ 2π

0
cen(ψ; q)cem(ψ; q) dψ = πδnm (21)

where δnm is the Kronecker delta and the two Mathieu functions share the173

same q. Multiplying (20) by each angular Mathieu function and integrating174

over the domain, integral expressions for the coefficients are175

βn =
1

π

∫ 2π

0
H0(η0, ψ)cen(ψ;−q) dψ, (22)

γn =
1

π

∫ 2π

0
H0(η0, ψ)sen(ψ;−q) dψ. (23)

(22) is expanded using (11), (A-1), and (A-2) resulting in176

β2n =
(−1)n

π

∞∑

r=0

(−1)rA
(2n)
2r

∫ 2π

0
e−B sin(ψ) cos(2rψ) dψ, (24)

β2n+1 =
(−1)n

π

∞∑

r=0

(−1)rB
(2n+1)
2r+1

∫ 2π

0
e−B sin(ψ) cos [(2r + 1)ψ] dψ. (25)

where A and B are matrices of Mathieu coefficients (see Appendix B). Using177

an integral definition for the modified Bessel function of the first kind (Watson,178

1944, §6.22), (24) simplifies to179

β2n = 2(−1)n
∞∑

r=0

A
(2n)
2r I2r(B), (26)

while (25) is zero for all integer r. This infinite sum of Bessel functions is180

equivalent to one of several definitions of a first-kind even radial Mathieu181

functions (A-8); this further simplifies the coefficient expression to182

β2n = 2p2nIe2n(η0;−q), (27)

where p2n = A
(2n)
0 /ce2n

(
π
2
; q
)
. Similarly, γn are found to be183

γ2n+1 =
(−1)n

π

∞∑

r=0

(−1)rA
(2n+1)
2r+1

∫ 2π

0
e−B sin(ψ) sin [(2r + 1)ψ] dψ (28)

= 2(−1)n+1
∞∑

r=0

A
(2n+1)
2r+1 I2r+1(B), (29)

= 2p2n+1Io2n+1(η0;−q) (30)

where the integral involving se2n+2 is zero for all integer r, and p2n+1 =184 √
qA

(2n+1)
1 /ce′2n+1

(
π
2
; q
)
, the prime indicating differentiation with respect to185

the argument.186
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Using (27) and (30), the solution for H from a horizontal ellipse is187

H(η ≥ η0, ψ) ∼= 2
N−1∑

n=0

p2nIe2n(η0;−q)ce2n(ψ;−q) Ke2n(η;−q)
Ke2n(η0;−q)

+ p2n+1Io2n+1(η0;−q)se2n+1(ψ;−q) Ko2n+1(η;−q)
Ko2n+1(η0;−q)

. (31)

The approximation comes from truncating the infinite sum at 2N − 1 terms.188

Eigenfunction expansions such as (31) share the favorable convergence prop-189

erties of Fourier series (Morse and Feshbach (1953, p.743), Arscott (1964,190

§3.9.1)). Appendix B has some heuristic discussion on the level of approxima-191

tion needed for most problems.192

3.2 Limiting cases193

3.2.1 Circular194

As the ellipse becomes a circle, [A,B] → R0, the dimensionless circular ra-195

dius. In the limit q → 0, the eigenvector matrices, A
(2n)
2r and A

(2n+1)
2r+1 , become196

diagonal (see Appendix B); each angular Mathieu function is composed of a197

single harmonic (n = r). Therefore, the sum of coefficients in r reduce to a198

single term, I2n(B).199

The circular cylinder solution of Philip (1984) is derived for the coordinate200

system in Figure 1, resulting in a circular solution that corresponds to (31) as201

e→ 0,202

H(R ≥ R0, φ) ∼= K0(R)

K0(R0)
I0(R0) + 2

N−1∑

n=1

(−1)n
K2n(R)

K2n(R0)
I2n(R0) cos(2nφ)−

2
N−1∑

m=0

(−1)m
K2m+1(R)

K2m+1(R0)
I2m+1(R0) sin [(2m+ 1)φ] , (32)

where Kn is the second-kind modified Bessel function, R = rα/2 is the di-203

mensionless radius, and φ is the angle (following the convention in Figure 1).204

The integrals involving odd cosine orders and even sine orders are zero for all205

integer n.206

Numerically, (31) is ill-behaved as e → 0. The Mathieu functions do asymp-207

totically become Bessel functions, but for e ≤ 0.01 the solution is better208

approximated with (32).209
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3.2.2 Strip210

In the other limiting case, as the elliptical cylinder degenerates to a strip211

(e = 1 and B = 0), the Ir(B) coefficients all become zero except I0(0) = 1,212

leaving213

H(η ≥ 0, ψ) ∼= 2
N−1∑

n=0

(−1)nA
(2n)
0 ce2n(ψ;−q)Ke2n(η;−q)

Ke2n(0;−q) , (33)

which is the same form given by Tranter (1951) and used by Kucûk and214

Brigham (1979) for the case of constant specified potential along an ellipse215

(not restricted to η0 = 0 in their cases). When B = 0, the boundary condi-216

tion on the ellipse (11) becomes constant; there is no z-variation across the217

strip. Numerically, (33) is well behaved; the radial Mathieu functions can be218

evaluated at η = 0 without problems.219

3.3 Modification for vertically oriented ellipse220

Since the modified Helmholtz equation (10) is symmetric with respect to x221

and z, the boundary conditions and back-transformation functions can be222

changed, to give the solution for a vertically-oriented ellipse. The domain is223

rotated clockwise by π/2 compared with Figure 1. The boundary condition is224

ϑ̃(η0, ψ̃) = 1, H̃0(η0, ψ̃) = e−A cos(ψ̃), (34)

where a tilde indicates the variable is related to the vertically-oriented ellipse225

(X̃ points down); the far-field boundary condition remains unchanged. (34)226

leads to modified expressions for the coefficients227

β̃2n =
(−1)n

π

∞∑

r=0

(−1)rA
(2n)
2r

∫ 2π

0
e−A cos(ψ̃) cos(2rψ̃) dψ̃

= 2(−1)n
∞∑

r=0

(−1)rA
(2n)
2r I2r(A), (35)

= 2s2nIe2n(η0;−q),

β̃2n+1 =
(−1)n

π

∞∑

r=0

(−1)rB
(2n+1)
2r+1

∫ 2π

0
e−A cos(ψ̃) cos

[
(2r + 1)ψ̃

]
dψ̃

= 2(−1)n+1
∞∑

r=0

(−1)rB
(2n+1)
2r+1 I2r+1(A), (36)

= −2s2n+1Ie2n+1(η0;−q)
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where now the integrals involving sen are zero for integer r, s2n = A
(2n)
0 /ce2n (0; q),228

and s2n+1 =
√
qB

(2n+1)
1 /se′2n+1(0; q). The solution for H̃, analogous to (31), is229

H̃(η̃ ≥ η0, ψ̃) ∼= 2
N−1∑

n=0

(−1)nsnIen(η0;−q)cen(ψ̃;−q) Ken(η̃;−q)
Ken(η0;−q)

, (37)

which is very similar in form to equation 27 of Philip (1984).230

This solution is back-transformed to dimensionless Cartesian coordinates using231

the definitions232

ϑ̃ = H̃eX̃ , X̃ = F cosh(η̃) cos(ψ̃), Z̃ = F sinh(η̃) sin(ψ̃). (38)

The dimensionless potentials are233

Ψ̃ =
h̃

h̃− h0

=
1

2
ln(ϑ̃), Φ̃ =

Φ̃

Φ̃ − h0

=
1

2
ln(ϑ̃) − X̃. (39)

The vertically-oriented solution (37) does not simplify in the limiting case234

η0 = 0, due to its orientation; the source always has a boundary condition235

that varies with X̃.236

4 Darcy flux along elliptical circumference237

To determine the total flowrate, Q̂ [L3/T ], and the average flux, v [L/T ],238

across the elliptical surface, the flux normal to the boundary of the ellipse is239

found, beginning with the dimensional form of Darcy’s law,240

v = −K(h)∇̂Φ, (40)

where v is the Darcy flux [L/T ]. Expressing the gradient operator in elliptical241

coordinates (Moon and Spencer, 1961b) makes (40)242

v =
−K(h)

f
√

1
2
(cosh(2η) − cos(2ψ))

(
∂Φ

∂η
eη +

∂Φ

∂ψ
eψ

)
, (41)

where e is a unit vector. For the horizontal ellipse, substituting Φ = h −243

f sinh(η) sin(ψ), using the notation ξ(η, ψ) =
√

1
2
(cosh(2η) − cos(2ψ)), and244

taking the dot product with eη gives245

v · eη =
K(h)

fξ(η, ψ)

[
f cosh(η) sin(ψ) − ∂h

∂η

]
, (42)
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for the radial (η) component of the flux. Evaluating (42) at η = η0, applying246

the Kirchhoff transformation (2), using the Gardner exponential model, and247

non-dimensionalizing the flux leads to248

V0 =
1

Fξ(η0, ψ)




2 sin(ψ) −
[
∂ϑ

∂η

]

η0




 , (43)

where V0 = 2v(η0) · eη/(Θ0α) and the subscript zero indicating the fluxes249

are evaluated on the boundary of the ellipse. The derivative in (43) can be250

expanded using the product rule as251

[
∂ϑ

∂η

]

η0

= eB sin(ψ)





[
∂H

∂η

]

η0

+ A sin(ψ)H(η0)



 , (44)

where H and its radial derivative are computed from (31).252

4.1 Average normal flux253

Multiplying by Fξ(η0, ψ), the integral of (43) over 0 ≤ ψ ≤ 2π represents254

the weighted average dimensionless normal flux across the boundary of the255

ellipse, V 0. This flux integral is found using the relationships from (24) and256

(29), along with the following integral relations257

∫ 2π

0
eB sin(ψ) sin(ψ)ce2n(ψ;−q) dψ = 2π(−1)n

∞∑

r=0

A
(2n)
2r I′2r(B),

= 2πp2nIe
′
2n(η0;−q), (45)

∫ 2π

0
eB sin(ψ) sin(ψ)se2n+1(ψ;−q) dψ = 2π(−1)n

∞∑

r=0

A
(2n+1)
2r+1 I′2r+1(B),

= 2πp2n+1Io
′
2n+1(η0;−q), (46)

which can be found through trigonometric product identities, Bessel func-258

tion derivative recurrence relationships, and definitions of the first-kind radial259

Mathieu functions (see Appendix A). Combining these, the expression for the260

average normal flux at the boundary of the ellipse is261

V 0
∼= −4π

N−1∑

n=0

[p2nIe2n(η0;−q)]2
Ke′2n(η0;−q)
Ke2n(η0;−q)

+ [p2n+1Io2n+1(η0;−q)]2
Ko′2n+1(η0;−q)
Ko2n+1(η0;−q)

(47)

−AIe2n(η0;−q)Ie′2n(z;−q)
−Ap2

2n+1Io2n+1(η0;−q)Io′2n+1(z;−q).
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The total flowrate is Q = V 0C, where C is the dimensionless elliptical circum-262

ference, given by (7) and (8).263

When B = 0 and η0 = 0, the average flux due to the strip source (47) simplifies264

to265

V 0(η0 = 0) ∼= −4π
N−1∑

n=0

[
A

(2n)
0

]2 Ke′2n(0;−q)
Ke2n(0;−q) . (48)

4.2 Normal flux for vertical ellipse266

Beginning again with (41), but instead substituting Φ̃ = h̃− f cosh(η̃) cos(ψ̃),267

the dimensionless flux normal to the boundary of the vertical ellipse, analogous268

to (43), is269

Ṽ0 =
1

Fξ(η0, ψ̃)



2 cos(ψ̃) −

[
∂ϑ̃

∂η̃

]

η0



 , (49)

where the derivative in (49) is270

[
∂ϑ̃

∂η̃

]

η0

= eA cos(ψ̃)





[
∂H̃

∂η̃

]

η0

+B cos(ψ̃)H̃(η0)



 . (50)

The average flux on the vertically-oriented ellipse is271

Ṽ 0
∼= −4π

N−1∑

n=0

[snIen(η0;−q)]2
Ke′n(η0;−q)
Ken(η0;−q)

−Bs2
nIen(η0;−q)Ie′n(w;−q), (51)

with the simplification for a strip source,272

Ṽ 0(η0 = 0) ∼= −4π
N∑

n=0

[snIen(η0;−q)]2
Ke′n(0;−q)
Ken(0;−q) . (52)

5 Results and Comparisons273

Contour plots of dimensionless hydraulic (Φ) and pressure (Ψ) heads for the274

three cases of horizontal elliptical-shaped sources are given in Figure 2. The275

different source shapes are controlled by eccentricity; we illustrate e = 0.9276

(ellipse-shaped), e = 1 (line segment), and e = 0.01 (nearly circular). The277

difference between the circular and elliptical cases when e = 0.01 and A =278

R = 1.0 is less than 1.5 × 10−5Ψ .279
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For the horizontal strip source (Figure 2), the specified h boundary condition280

degenerates to the constant boundary condition used by Tranter (1951) and281

Kucûk and Brigham (1979). For both the elliptical- and circular-shaped cavi-282

ties, the variation in Φ along the source boundary can be seen in the contour283

plots.284

Figure 3 shows characteristic contours of Φ̃ and Ψ̃ for the vertical elliptical285

and slit cases. Unlike the horizontal ellipse, the solution for the degenerate slit286

case (the line segment −1 ≤ X̃ ≤ 1) does not simplify the boundary condition.287

For plotting contour maps, such as those in Figures 2 and 3, a great deal of288

effort can be saved if the solution is computed on a “separated” elliptical mesh289

(Orszag, 1986). The angular Mathieu functions are computed for a vector of290

ψ and the radial Mathieu functions are computed for a vector of η, then291

they are combined in an outer-product sense. Many plotting programs can292

accommodate a non-Cartesian mesh, facilitating the use of this strategy.293

The dimensionless flowrate, Q = CV 0, is plotted on semi-log and log-log scales294

in Figure 4 for ranges of dimensionless semi-width, A, and eccentricity, e. For295

a given size, there is more water flowing from the circular cavity due to the296

greater surface area normal to flow. A horizontal ellipse (solid lines) deviates297

less from the circular solution (highest dash-dot line) than an equivalent ver-298

tical ellipse (dashed lines). This can be seen by comparing the location of the299

−0.25 Ψ contour in Figures 2 and 3; the vertical strip is smallest, while the300

circular cutout is largest. For ellipses where e ≤ 0.5 the difference between the301

circular and elliptical solutions is minor.302

To facilitate the use of this solution for computing steady flowrate from an303

strip, circle or furrow, second-degree rational polynomials were fitted to the304

curves in Figure 4 using least-squares. The polynomial coefficients are given305

in Table 1. The polynomial regression is performed in log-log space, where the306

curves take the form307

log10 [Q(A)] =
c0 + c1 log10(A) + c2 [log10(A)]2

1 + c3 log10(A)
, (53)

and the error in approximation is ≤ 1% over 0.01 ≤ A ≤ 2 (with slightly more308

error for large A in the vertical ellipse case).309

The distribution of V0 along the boundary of the ellipse, as a function of ψ, for310

different values of A, is given in Figure 5. For the larger cavity, the variation311

of flux along the circumference of the cavity is greater, due to the fact that312

the boundary condition strength is a function of the vertical coordinate.313
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6 Summary314

We derived a two-dimensional solution in elliptic-cylinder coordinates for Richards’315

equation, illustrating its degeneration to the strip and circular cases. Infinite316

series expressions for the flowrate and flux from the elliptical cutout were317

also derived. The solutions are in terms of the eigenfunctions for elliptical318

coordinates, which themselves can be computed from infinite series of the319

eigenfunctions for polar coordinates.320

Although the solutions developed herein are for free space, they represents321

strip and furrow geometries more realistically than the widely used point322

(Philip, 1968) or circular (Philip, 1984) solutions. To incorporate boundary323

conditions on horizontal surfaces, approximate boundary-matching techniques324

must be used (e.g., those used by Bakker and Nieber (2004)). The general so-325

lution (19) is in the form of an AEM solution, but the final forms (31 or326

37) only have two free parameters beyond the geometry (α and h0); flexible327

AEM elements commonly have many more. Analytic solutions usually have328

fewer free parameters than elements in AEM do, but this is what makes them329

simpler to use.330

A short Matlab script which computes the required Mathieu functions and331

evaluates the dimensionless potentials and fluxes is available from the corre-332

sponding author upon request.333
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Appendix A340

The modified angular Mathieu functions are defined as infinite series of trigono-341

metric functions (see McLachlan (1947, §2.18)),342

ce2n(ψ;−q) = (−1)n
∞∑

r=0

(−1)rA
(2n)
2r cos[2rψ], (A-1)

ce2n+1(ψ;−q) = (−1)n
∞∑

r=0

(−1)rB
(2n+1)
2r+1 cos[(2r + 1)ψ], (A-2)

se2n+1(ψ;−q) = (−1)n
∞∑

r=0

(−1)rA
(2n+1)
2r+1 sin[(2r + 1)ψ], (A-3)

se2n+2(ψ;−q) = (−1)n
∞∑

r=0

(−1)rB
(2n+2)
2r+2 sin[(2r + 2)ψ], (A-4)

where A(n)
r and B(n)

r are matrices of the Mathieu coefficients (eigenvectors343

for each eigenvalue λn), they are the generalized Fourier series coefficients344

representing the Mathieu functions; see Appendix B.345

The radial modified Mathieu functions of the second kind are used as solu-346

tions to the radial Mathieu equation (15) and are only evaluated in ratios of347

functions of the same kind and order, allowing them to be simplified from348

their definitions in terms of Bessel function product series (McLachlan, 1947,349

§13.30),350

Ke2n(η;−q) = Dn

∞∑

r=0

A
(2n)
2r Ir(v1)Kr(v2), (A-5)

Ke2n+1(η;−q) = Dn

∞∑

r=0

B
(2n+1)
2r+1 [Ir(v1)Kr+1(v2) − Ir+1(v1)Kr(v2)] , (A-6)

Ko2n+1(η;−q) = Dn

∞∑

r=0

A
(2n+1)
2r+1 [Ir(v1)Kr+1(v2) + Ir+1(v1)Kr(v2)] , (A-7)

where Dn is a normalization constant (not all the same) that is only a function351

of the order, v1 =
√
qe−η, v2 =

√
qeη, and the eigenvectors A(n)

r and B(n)
r are352

the same used in the angular Mathieu function definitions. The normalization353

constants can be found in McLachlan (1947, p.368).354

The integral expressions evaluate to radial Mathieu functions of the first kind,355

when they are given in one of their several equivalent solutions in terms of356
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Bessel function series (McLachlan, 1947, §8.30)357

Ie2n(ω;−q) = (−1)n
ce2n

(
π
2
; q
)

A
(2n)
0

∞∑

r=0

A
(2n)
2r I2r [2

√
q sinh(ω)] (A-8)

Ie2n(ω;−q) = (−1)n
ce2n(0; q)

A
(2n)
0

∞∑

r=0

(−1)rA
(2n)
2r I2r [2

√
q cosh(ω)] (A-9)

Ie2n+1(ω;−q) = (−1)n
se′2n+1(0; q)
√
qB

(2n+1)
1

∞∑

r=0

(−1)rB
(2n+1)
2r+1 I2r+1 [2

√
q cosh(ω)]

(A-10)

Io2n+1(ω;−q) = (−1)n+1
ce′2n+1

(
π
2
; q
)

√
qA

(2n+1)
1

∞∑

r=0

A
(2n+1)
2r+1 I2r+1 [2

√
q sinh(ω)] (A-11)

Appendix B358

Alhargan (2000) has published C++ routines for evaluating Mathieu functions359

based on the more efficient but less widely applicable continued fraction ex-360

pansion method. These routines utilize a different normalization scheme than361

(21) and are only valid for small Mathieu parameter (q ≤ 4n). We use the362

more general modern matrix formulation with available matrix solution soft-363

ware (Stamnes and Spjelkavik, 1995; Chaos-Cador and Ley-Koo, 2002), which364

is valid for any q.365

The development of the matrices from which the eigenvalues are computed366

is found in Green and Michaelson (1965), Delft Numerical Analysis Group367

(1973), and Stamnes and Spjelkavik (1995). The main and off-diagonals of the368

infinite matrices, from which the eigenvalues and eigenvectors are computed,369

are370

Aev =




0 4 16 . . . (2r)2 . . .
√

2q q q . . . q . . .


 , (B-1)

371

Aod =




1 − q 9 25 . . . (2r + 1)2 . . .

q q q . . . q . . .


 , (B-2)

372

Bod =




1 + q 9 25 . . . (2r + 1)2 . . .

q q q . . . q . . .


 , (B-3)

where A
(2n)
2r is the matrix of eigenvectors from the symmetric tridiagonal ma-373

trix composed of the diagonal (first row) and the off-diagonals (second row)374

of Aev. Similarly, Aod leads to A
(2n+1)
2r+1 and Bod leads to B

(2n+1)
2r+1 .375
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The matrices (B-1–B-3) and the eigenvector matrices derived from them A(n)
r ,B(n)

r376

are infinite matrices that must be truncated (at R terms); for the geometries377

illustrated here R ≤ 20 is sufficient. Ellipses of very long aspect ratio (large378

|q|) may require larger R (more quantitative relationships for required R are379

given by Delft Numerical Analysis Group (1973)), but the calculations re-380

main trivial on a desktop computer. For the application considered here, when381

A ≤ 2, the expansion of the boundary condition in angular Mathieu functions382

(N = 10, R = 16) is accurate to at least single precision.383

Since eigenvectors only define a direction, we normalize them utilizing a con-384

vention attributed to Goldstein (1927) and used by McLachlan (1947). It con-385

sists of specifying the eigenvectors to be unit length, with special considera-386

tions for the zero-order even function. This convention leads to the functions387

having root mean squared values of 1/
√

2 over the interval 0 ≤ ψ ≤ 2π (Ar-388

scott, 1964, §3).389

If LAPACK (or equivalently eig() in Matlab) is used to compute the eigen-390

vector matrices, only the first eigenvector of A
(2n)
2r must be re-scaled. The391

solution for ce0(ψ;−q) is normalized so it degenerates to 1√
2
cos(0) as q → 0.392

This requires the normalization be393

2
[
A

(0)
0

]2
+

∞∑

r=1

[
A(0)
r

]2
= 1, (B-4)

where the first term is included twice.394
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circular horizontal ellipse vertical ellipse

e 0 1 0.9 0.5 1 0.9 0.5

c0 1.7054 1.2021 1.3975 1.6344 1.0991 1.3364 1.6199

c1 2.3638 2.1901 2.2727 2.3411 2.1291 2.3231 2.3636

c2 -0.2747 -0.8789 -0.5527 -0.3298 -0.7294 -0.3172 -0.2678

c3 -0.1700 -0.4488 -0.2977 -0.1951 -0.3603 -0.1813 -0.1651

Table 1
Rational polynomial regression coefficients for Q(A) in (53)
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Fig. 1. Elliptical coordinates η (radial) and ψ (angular); a, b, and f are the semi–
major, -minor, and -focal lengths.
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Fig. 2. Contours of dimensionless hydraulic head, Φ, (left) and pressure head, Ψ,
(right) for horizontal ellipses (A = 1.0, e = [0.9, 1.0, 0.01])22
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Fig. 3. Contours of dimensionless hydraulic head, Φ̃, (left) and pressure head, Ψ̃,
(right) for vertical ellipse (A = 1.0, e = [0.9, 1.0])
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