

¹ Quasilinear infiltration from an elliptical ² cavity

³ Kristopher L. Kuhlman ^a Arthur W. Warrick ^b

⁴ ^a*Department of Hydrology & Water Resources, University of Arizona, Tucson,
5 Arizona 85721, USA*

⁶ ^b*Department of Soil, Water & Environmental Science, University of Arizona,
7 Tucson, Arizona 85721, USA*

⁸ **Abstract**

⁹ We develop analytic solutions to the linearized steady-state Richards equation for
¹⁰ head and total flowrate due to an elliptic cylinder cavity with a specified pressure
¹¹ head boundary condition. They are generalizations of the circular cylinder cavity
¹² solutions of Philip (1984). The circular and strip sources are limiting cases of the
¹³ elliptical cylinder solution, derived for both horizontally- and vertically-aligned el-
¹⁴ lliptes. We give approximate rational polynomial expressions for total flowrate from
¹⁵ an elliptical cylinder over a range of sizes and shapes. The exact elliptical solution
¹⁶ is in terms of Mathieu functions, which themselves are generalizations of and com-
¹⁷ puted from trigonometric and Bessel functions. The required Mathieu functions are
¹⁸ computed from a matrix eigenvector problem, a modern approach that is straight-
¹⁹ forward to implement using available linear algebra libraries. Although less efficient
²⁰ and potentially less accurate than the iterative continued fraction approach, the
²¹ matrix approach is simpler to understand and implement and is valid over a wider
²² parameter range.

²³ *Key words:* quasilinear, Richards' equation, analytic solution, elliptic cylinder
²⁴ coordinates, Mathieu functions

²⁵ **1 Introduction**

²⁶ A solution for flow from a long elliptic cylinder cavity is given in two-dimensional
²⁷ elliptical coordinates for the quasilinear (Philip, 1968) form of the steady un-
²⁸ saturated flow equation (Richards, 1931) in a homogeneous porous medium.

* Corresponding author. Tel.: + 1 520 621 1380

Email address: kuhlman@hwr.arizona.edu (Kristopher L. Kuhlman).

29 The solution is an extension of one by Philip (1984) for flow from a circular
30 cylinder cavity.

31 The approach taken here is to expand the linearized potential in the natural
32 eigenfunctions that arise in elliptical coordinates. This technique has been
33 utilized extensively in the physics literature (e.g., Stratton (1941, §6.12), Chu
34 and Stratton (1941), Morse and Feshbach (1953, p.1407–1432), Moon and
35 Spencer (1961a), Arscott (1964), and Kleinermann et al. (2002)), but the
36 solution derived here for the current problem's boundary conditions is new.

37 Unsaturated porous media flow, specifically infiltration, is a very non-linear
38 process that is often solved numerically with finite element codes such as
39 HYDRUS-2D (e.g., Skaggs et al. (2004)). Analytic solutions to infiltration
40 problems, restricted as they may be, often deliver more insightful results due to
41 their simplicity. They give solutions with fewer potentially complicating auxiliary
42 parameters. Pullan (1990) reviews the history of the quasilinear solution
43 methodology and compares numerous approaches for solving the linearized
44 Richards equation.

45 In the context of predicting furrow infiltration, Rawls et al. (1990) compared
46 steady infiltration solutions for 1, 2, and 3 dimensions, using the 2D point
47 source solution of Philip (1968) in the comparison. The solution derived here
48 for an elliptical shape is more realistically furrow-shaped; ellipses have the
49 capability of simulating the geometry associated with either wide or deep cavities
50 and strips, rather than simple point approximations. Warrick et al. (2007) and
51 Warrick and Lazarovitch (2007) discuss the impacts that dimensionality and
52 “edge effects” have on infiltration from strips and parabolic-shaped furrows.

53 The elliptical solution derived here can represent the geometry of a strip or
54 furrow explicitly, although without surface or water table boundary effects. It
55 is a free-space solution, since it is valid at large distance. A dry far-field
56 condition is assumed, resulting in no-flow far away from the ellipse. Including the
57 effects of the land surface (potentially intersecting the ellipse) would require
58 imposing a no-flow boundary condition. This homogeneous type II boundary
59 condition would become an inhomogeneous type III boundary condition after
60 applying the required non-linear transformations (Wooding, 1968). A solution
61 for flow from an elliptical cavity that accounted for this boundary condition
62 would most likely be approximate in nature (e.g., a linearized AEM or gridded
63 numerical solution). An alternative approach would be to use the integral ex-
64 pression of Lomen and Warrick (1978, eq.5) (with $D = 0$, and no dependence
65 on Y or T) to include the effects of a horizontal evaporative or no-flow bound-
66 ary. Similarly, Philip (1989) and Warrick (2003, p.276) indicate how a water
67 table condition can be accounted for with a free-space solution. Using the so-
68 lution derived here in these integral relationships leads to integral expressions
69 that cannot be evaluated in closed form for general values of the coordinates.

70 Bakker and Nieber (2004) applied the analytic element method to the quasi-
 71 linear flow equation for the problem of uniform vertical flow through ellipses
 72 of different material properties. Their approach is quite general, but to obtain
 73 a solution for multiple elements involves performing two nested iterations. A
 74 non-linear boundary-matching iteration is nested within an outer iteration
 75 that accounts for the effects elements have on one another. In the analysis
 76 presented here, no iterations are required to compute the solution, outside
 77 of those potentially needed to compute the required Mathieu functions (also
 78 needed for the AEM solution).

79 Mathieu functions are the special functions that arise as solutions to the
 80 Helmholtz equation in elliptic-cylinder coordinates (Morse and Feshbach (1953,
 81 p.562), Moon and Spencer (1961b), Arscott and Darai (1981), and Ben-Menahem
 82 and Singh (2000, p.53)). We use a modern matrix eigenvector approach (Stamnes
 83 and Spjelkavik, 1995; Chaos-Cador and Ley-Koo, 2002), allowing all the re-
 84 quired functions and coefficients to be computed using any combination of
 85 widely available eigensolution (e.g., Matlab (MathWorks, 2007) or LAPACK
 86 (Golub and van Loan, 1996)) and Bessel function routines.

87 2 Governing equation

88 2.1 Quasilinear flow equation

89 The steady-state unsaturated porous media flow equation (Richards, 1931) is

$$\widehat{\nabla} \cdot (K(h)\widehat{\nabla} h) = \frac{\partial K}{\partial z}, \quad (1)$$

90 where $K(h)$ is hydraulic conductivity [L/T], a non-linear function of pressure
 91 head, h [L]. Flow is driven by gradients in hydraulic head, $\Phi = h - z$, the sum
 92 of pressure and elevation heads (z positive down). Hats indicate dimensional
 93 differential operators. The Kirchhoff transformation (Klute, 1952) is used to
 94 linearize (1); it is

$$\Theta(h) = \int_{-\infty}^h K(u) \, du, \quad (2)$$

95 where u is a dummy variable and Θ is matric flux potential [L^2/T]. Applying
 96 (2) leads to

$$\widehat{\nabla}^2 \Theta = \frac{1}{K} \frac{dK}{dh} \frac{\partial \Theta}{\partial z}. \quad (3)$$

97 The Gardner (1958) exponential $K(h)$ distribution is used to simplify (3)
 98 further, by assuming the linearizing relationship $K(h) = K_0 e^{\alpha h}$, where $h < 0$
 99 for unsaturated flow, α is the sorptive number [$1/L$] (related to pore size) and

¹⁰⁰ K_0 is K at saturation. With the Gardner distribution, (3) becomes

$$\widehat{\nabla}^2 \Theta = \alpha \frac{\partial \Theta}{\partial z}, \quad (4)$$

¹⁰¹ the steady quasilinear form of Richards' equation. The quasilinear approxima-
¹⁰² tion was first extensively studied by Philip (1968); Pullan (1990) summarizes
¹⁰³ its benefits and limitations.

¹⁰⁴ *2.2 Elliptical geometry*

¹⁰⁵ A long elliptical pipe is represented as a surface of constant radius in two-
¹⁰⁶ dimensional elliptic-cylinder coordinates, where the variation along the length
¹⁰⁷ of the pipe is negligible. For a horizontal ellipse, the major axis is parallel
¹⁰⁸ to the land surface and the positive z -axis points down (see Figure 1). The
¹⁰⁹ elliptical angular coordinate starts at the positive x -axis and increases clock-
¹¹⁰ wise, $0 \leq \psi \leq 2\pi$. Cartesian coordinates (x, z) [L] are defined in terms of the
¹¹¹ dimensionless elliptical coordinates (η, ψ) as

$$x = f \cosh(\eta) \cos(\psi), \quad z = f \sinh(\eta) \sin(\psi), \quad (5)$$

¹¹² where f is the semi-focal distance [L]; the cylindrical boundary is $\eta = \eta_0$. The
¹¹³ eccentricity of the ellipse is a dimensionless quantity,

$$e = \sqrt{1 - \frac{b^2}{a^2}}, \quad (6)$$

¹¹⁴ equivalently given as $f = ea$, that ranges from 0 (circle) to 1 (line segment
¹¹⁵ joining the foci). The pair (a, e) completely specifies the geometry of the prob-
¹¹⁶ lem; a is a measure of the size of the cavity, while e is related to its shape. The
¹¹⁷ circumference of the ellipse, c [L], cannot be evaluated exactly in closed form.
¹¹⁸ It is defined by an elliptic integral, but can be approximated using one of sev-
¹¹⁹ eral formulas. We use the simple YNOT expression (Maertens and Rousseau,
¹²⁰ 2000)

$$c \approx 4 \sqrt[4]{a^y + b^y}, \quad (7)$$

¹²¹ where $y = \ln(2)/\ln\left(\frac{\pi}{2}\right)$ and the error in the approximation is at most 0.4%.

¹²² *2.3 Non-dimensionalizing*

¹²³ Because of the problem's homogeneity, it can be made dimensionless with
¹²⁴ respect to the porous medium's sorptive number. Dimensionless lengths are
¹²⁵ defined

$$\frac{A}{a} = \frac{B}{b} = \frac{F}{f} = \frac{C}{c} = \frac{X}{x} = \frac{Z}{z} = \frac{\alpha}{2}, \quad (8)$$

126 where capital letters are dimensionless versions of lower-case variables. The
 127 dimensionless matric flux potential is $\vartheta = \Theta/\Theta(\eta_0)$. The boundary condition
 128 on the ellipse is specified pressure head, $h(\eta_0) = h_0$. For simplicity, the far-field
 129 boundary condition is no-flow,

$$h(\eta \rightarrow \infty) = -\infty, \quad \Theta[h(\eta \rightarrow \infty)] = 0; \quad (9)$$

130 this corresponds to an assumption of dry conditions away from the cutout,
 131 i.e., the flow field is dominated by the moisture infiltrating from the ellipse.

132 The linearized flow equation (4) in dimensionless form, after the exponen-
 133 tial substitution $\vartheta = He^Z$, becomes the Yukawa (Duffin, 1971) or modified
 134 Helmholtz equation,

$$\nabla^2 H = H; \quad (10)$$

135 (10) is subject to the boundary conditions

$$H(\eta_0, \psi) = e^{-F \sinh(\eta_0) \sin(\psi)} = e^{-B \sin(\psi)}, \quad (11)$$

$$H(\eta \rightarrow \infty) = He^{F \sinh(\eta) \sin(\psi)} \rightarrow 0, \quad (12)$$

136 in elliptical coordinates. Many solutions to (10) are available in the physics
 137 literature, though the combination of boundary condition (11) and elliptical
 138 geometry makes the solution derived here unique.

139 The dimensionless pressure (Ψ) and hydraulic (Φ) heads are defined and re-
 140 lated to ϑ by

$$\Psi = \frac{h}{h - h_0} = \frac{1}{2} \ln(\vartheta), \quad \Phi = \frac{\Phi}{\Phi - h_0} = \frac{1}{2} \ln(\vartheta) - Z, \quad (13)$$

141 where we take $h_0 = 0$ for simplicity.

142 3 Solution via separation of variables

143 The dimensionless modified Helmholtz equation (10) in elliptical coordinates
 144 (Moon and Spencer, 1961b, p.17) is

$$\frac{2}{F^2 [\cosh(2\eta) - \cos(2\psi)]} \left(\frac{\partial^2 H}{\partial \eta^2} + \frac{\partial^2 H}{\partial \psi^2} \right) = H. \quad (14)$$

145 We perform separation of variables by substituting $H(\eta, \psi) = R(\eta)Y(\psi)$, di-
 146 viding by H , separating terms dependent on η from those dependent on ψ ,
 147 and setting both quantities equal to the separation constant, λ ; this results in

$$\frac{d^2 R}{d\eta^2} = R (2q \cosh(2\eta) + \lambda), \quad (15)$$

148

$$\frac{d^2Y}{d\psi^2} = -Y (2q \cos(2\psi) + \lambda). \quad (16)$$

149 These are the radial (15) and angular (16) modified Mathieu equations (McLach-
 150 lan, 1947). Here, λ is an eigenvalue chosen to make the angular solution, $Y(\psi)$,
 151 periodic for the specified value of the Mathieu parameter, $q = -F^2/4$. The
 152 solutions to equations (15) and (16) are radial and angular modified Mathieu
 153 functions; see Alhargan (2000), Gutiérrez Vega et al. (2003), or Bakker and
 154 Nieber (2004) for characteristic functional plots. The periodic solution to (16)
 155 and the corresponding free-space solution to (15) is

$$Y(\psi) = a_0 \text{ce}_0(\psi; -q) + \sum_{n=1}^{\infty} a_n \text{ce}_n(\psi; -q) + b_n \text{se}_n(\psi; -q), \quad (17)$$

$$R(\eta) = c_0 \text{Ke}_0(\eta; -q) + \sum_{n=1}^{\infty} c_n \text{Ke}_n(\eta; -q) + d_n \text{Ko}_n(\eta; -q), \quad (18)$$

156 where a_n , b_n , c_n , and d_n are coefficients to determine and $\text{ce}_n(\psi; -q)$ and $\text{se}_n(\psi; -q)$
 157 are the even and odd, n^{th} -order, first-kind angular Mathieu functions of ar-
 158 gument ψ and parameter $-q$. These functions degenerate to trigonometric
 159 functions as $q \rightarrow 0$ (see Appendix A for definitions). Similarly, $\text{Ke}_n(\eta; -q)$
 160 and $\text{Ko}_n(\eta; -q)$ are the even and odd, n^{th} -order, second-kind radial Math-
 161 ieu functions of argument η and parameter $-q$. Radial Mathieu functions are
 162 analogous to modified Bessel functions, degenerating to them as $q \rightarrow 0$.

163 The product of solutions to the Mathieu equations is a solution to (14),

$$H(\eta \geq \eta_0, \psi) = \sum_{n=0}^{\infty} \beta_n \frac{\text{Ke}_n(\eta; -q)}{\text{Ke}_n(\eta_0; -q)} \text{ce}_n(\psi; -q) + \sum_{n=1}^{\infty} \gamma_n \frac{\text{Ko}_n(\eta; -q)}{\text{Ko}_n(\eta_0; -q)} \text{se}_n(\psi; -q) \quad (19)$$

164 where β_n and γ_n are coefficients to determine and the radial Mathieu functions
 165 are normalized by their value on the boundary of the ellipse. Cross-products
 166 involving both odd and even functions are not considered because these sol-
 167 utions correspond to different eigenvalues, which may only be combined via
 168 summation. At $\eta = \eta_0$, (19) simplifies to

$$H_0(\eta_0, \psi) = \beta_0 \text{ce}_0(\psi; -q) + \sum_{n=1}^{\infty} \beta_n \text{ce}_n(\psi; -q) + \gamma_n \text{se}_n(\psi; -q). \quad (20)$$

169 *3.1 Determination of coefficients*

170 The orthogonality of the angular Mathieu functions is derived from the or-
 171 thogonality of their sine and cosine components (McLachlan, 1947, §2.19);

¹⁷² $\int_0^{2\pi} \text{ce}_n(\psi; q) \text{se}_m(\psi; q) \, d\psi = 0$ for any m, n , while

$$\int_0^{2\pi} \text{se}_n(\psi; q) \text{se}_m(\psi; q) \, d\psi = \int_0^{2\pi} \text{ce}_n(\psi; q) \text{ce}_m(\psi; q) \, d\psi = \pi \delta_{nm} \quad (21)$$

¹⁷³ where δ_{nm} is the Kronecker delta and the two Mathieu functions share the
¹⁷⁴ same q . Multiplying (20) by each angular Mathieu function and integrating
¹⁷⁵ over the domain, integral expressions for the coefficients are

$$\beta_n = \frac{1}{\pi} \int_0^{2\pi} H_0(\eta_0, \psi) \text{ce}_n(\psi; -q) \, d\psi, \quad (22)$$

$$\gamma_n = \frac{1}{\pi} \int_0^{2\pi} H_0(\eta_0, \psi) \text{se}_n(\psi; -q) \, d\psi. \quad (23)$$

¹⁷⁶ (22) is expanded using (11), (A-1), and (A-2) resulting in

$$\beta_{2n} = \frac{(-1)^n}{\pi} \sum_{r=0}^{\infty} (-1)^r \mathbf{A}_{2r}^{(2n)} \int_0^{2\pi} e^{-B \sin(\psi)} \cos(2r\psi) \, d\psi, \quad (24)$$

$$\beta_{2n+1} = \frac{(-1)^n}{\pi} \sum_{r=0}^{\infty} (-1)^r \mathbf{B}_{2r+1}^{(2n+1)} \int_0^{2\pi} e^{-B \sin(\psi)} \cos[(2r+1)\psi] \, d\psi. \quad (25)$$

¹⁷⁷ where \mathbf{A} and \mathbf{B} are matrices of Mathieu coefficients (see Appendix B). Using
¹⁷⁸ an integral definition for the modified Bessel function of the first kind (Watson,
¹⁷⁹ 1944, §6.22), (24) simplifies to

$$\beta_{2n} = 2(-1)^n \sum_{r=0}^{\infty} \mathbf{A}_{2r}^{(2n)} I_{2r}(B), \quad (26)$$

¹⁸⁰ while (25) is zero for all integer r . This infinite sum of Bessel functions is
¹⁸¹ equivalent to one of several definitions of a first-kind even radial Mathieu
¹⁸² functions (A-8); this further simplifies the coefficient expression to

$$\beta_{2n} = 2p_{2n} I_{2n}(\eta_0; -q), \quad (27)$$

¹⁸³ where $p_{2n} = \mathbf{A}_0^{(2n)} / \text{ce}_{2n}(\frac{\pi}{2}; q)$. Similarly, γ_n are found to be

$$\gamma_{2n+1} = \frac{(-1)^n}{\pi} \sum_{r=0}^{\infty} (-1)^r \mathbf{A}_{2r+1}^{(2n+1)} \int_0^{2\pi} e^{-B \sin(\psi)} \sin[(2r+1)\psi] \, d\psi \quad (28)$$

$$= 2(-1)^{n+1} \sum_{r=0}^{\infty} \mathbf{A}_{2r+1}^{(2n+1)} I_{2r+1}(B), \quad (29)$$

$$= 2p_{2n+1} I_{2n+1}(\eta_0; -q) \quad (30)$$

¹⁸⁴ where the integral involving se_{2n+2} is zero for all integer r , and $p_{2n+1} =$
¹⁸⁵ $\sqrt{q} \mathbf{A}_1^{(2n+1)} / \text{ce}'_{2n+1}(\frac{\pi}{2}; q)$, the prime indicating differentiation with respect to
¹⁸⁶ the argument.

¹⁸⁷ Using (27) and (30), the solution for H from a horizontal ellipse is

$$H(\eta \geq \eta_0, \psi) \cong 2 \sum_{n=0}^{N-1} p_{2n} I_{e2n}(\eta_0; -q) c_{e2n}(\psi; -q) \frac{K_{e2n}(\eta; -q)}{K_{e2n}(\eta_0; -q)} + p_{2n+1} I_{o2n+1}(\eta_0; -q) s_{e2n+1}(\psi; -q) \frac{K_{o2n+1}(\eta; -q)}{K_{o2n+1}(\eta_0; -q)}. \quad (31)$$

¹⁸⁸ The approximation comes from truncating the infinite sum at $2N - 1$ terms.
¹⁸⁹ Eigenfunction expansions such as (31) share the favorable convergence prop-
¹⁹⁰ erties of Fourier series (Morse and Feshbach (1953, p.743), Arscott (1964,
¹⁹¹ §3.9.1)). Appendix B has some heuristic discussion on the level of approxima-
¹⁹² tion needed for most problems.

¹⁹³ *3.2 Limiting cases*

¹⁹⁴ *3.2.1 Circular*

¹⁹⁵ As the ellipse becomes a circle, $[A, B] \rightarrow R_0$, the dimensionless circular ra-
¹⁹⁶ dius. In the limit $q \rightarrow 0$, the eigenvector matrices, $\mathbf{A}_{2r}^{(2n)}$ and $\mathbf{A}_{2r+1}^{(2n+1)}$, become
¹⁹⁷ diagonal (see Appendix B); each angular Mathieu function is composed of a
¹⁹⁸ single harmonic ($n = r$). Therefore, the sum of coefficients in r reduce to a
¹⁹⁹ single term, $I_{2n}(B)$.

²⁰⁰ The circular cylinder solution of Philip (1984) is derived for the coordinate
²⁰¹ system in Figure 1, resulting in a circular solution that corresponds to (31) as
²⁰² $e \rightarrow 0$,

$$H(R \geq R_0, \phi) \cong \frac{K_0(R)}{K_0(R_0)} I_0(R_0) + 2 \sum_{n=1}^{N-1} (-1)^n \frac{K_{2n}(R)}{K_{2n}(R_0)} I_{2n}(R_0) \cos(2n\phi) - 2 \sum_{m=0}^{N-1} (-1)^m \frac{K_{2m+1}(R)}{K_{2m+1}(R_0)} I_{2m+1}(R_0) \sin[(2m+1)\phi], \quad (32)$$

²⁰³ where K_n is the second-kind modified Bessel function, $R = r\alpha/2$ is the di-
²⁰⁴ mensionless radius, and ϕ is the angle (following the convention in Figure 1).
²⁰⁵ The integrals involving odd cosine orders and even sine orders are zero for all
²⁰⁶ integer n .

²⁰⁷ Numerically, (31) is ill-behaved as $e \rightarrow 0$. The Mathieu functions do asymp-
²⁰⁸ totically become Bessel functions, but for $e \leq 0.01$ the solution is better
²⁰⁹ approximated with (32).

210 3.2.2 *Strip*

211 In the other limiting case, as the elliptical cylinder degenerates to a strip
 212 ($e = 1$ and $B = 0$), the $I_r(B)$ coefficients all become zero except $I_0(0) = 1$,
 213 leaving

$$H(\eta \geq 0, \psi) \cong 2 \sum_{n=0}^{N-1} (-1)^n \mathbf{A}_0^{(2n)} \text{ce}_{2n}(\psi; -q) \frac{\text{Ke}_{2n}(\eta; -q)}{\text{Ke}_{2n}(0; -q)}, \quad (33)$$

214 which is the same form given by Tranter (1951) and used by Kucük and
 215 Brigham (1979) for the case of constant specified potential along an ellipse
 216 (not restricted to $\eta_0 = 0$ in their cases). When $B = 0$, the boundary condition
 217 on the ellipse (11) becomes constant; there is no z -variation across the
 218 strip. Numerically, (33) is well behaved; the radial Mathieu functions can be
 219 evaluated at $\eta = 0$ without problems.

220 3.3 *Modification for vertically oriented ellipse*

221 Since the modified Helmholtz equation (10) is symmetric with respect to x
 222 and z , the boundary conditions and back-transformation functions can be
 223 changed, to give the solution for a vertically-oriented ellipse. The domain is
 224 rotated clockwise by $\pi/2$ compared with Figure 1. The boundary condition is

$$\tilde{\vartheta}(\eta_0, \tilde{\psi}) = 1, \quad \tilde{H}_0(\eta_0, \tilde{\psi}) = e^{-A \cos(\tilde{\psi})}, \quad (34)$$

225 where a tilde indicates the variable is related to the vertically-oriented ellipse
 226 (\tilde{X} points down); the far-field boundary condition remains unchanged. (34)
 227 leads to modified expressions for the coefficients

$$\begin{aligned} \tilde{\beta}_{2n} &= \frac{(-1)^n}{\pi} \sum_{r=0}^{\infty} (-1)^r \mathbf{A}_{2r}^{(2n)} \int_0^{2\pi} e^{-A \cos(\tilde{\psi})} \cos(2r\tilde{\psi}) \, d\tilde{\psi} \\ &= 2(-1)^n \sum_{r=0}^{\infty} (-1)^r \mathbf{A}_{2r}^{(2n)} I_{2r}(A), \end{aligned} \quad (35)$$

$$= 2s_{2n} \text{Ie}_{2n}(\eta_0; -q),$$

$$\begin{aligned} \tilde{\beta}_{2n+1} &= \frac{(-1)^n}{\pi} \sum_{r=0}^{\infty} (-1)^r \mathbf{B}_{2r+1}^{(2n+1)} \int_0^{2\pi} e^{-A \cos(\tilde{\psi})} \cos[(2r+1)\tilde{\psi}] \, d\tilde{\psi} \\ &= 2(-1)^{n+1} \sum_{r=0}^{\infty} (-1)^r \mathbf{B}_{2r+1}^{(2n+1)} I_{2r+1}(A), \end{aligned} \quad (36)$$

$$= -2s_{2n+1} \text{Ie}_{2n+1}(\eta_0; -q)$$

228 where now the integrals involving se_n are zero for integer r , $s_{2n} = \mathbf{A}_0^{(2n)}/\text{ce}_{2n}(0; q)$,
229 and $s_{2n+1} = \sqrt{q}\mathbf{B}_1^{(2n+1)}/\text{se}'_{2n+1}(0; q)$. The solution for \tilde{H} , analogous to (31), is

$$\tilde{H}(\tilde{\eta} \geq \eta_0, \tilde{\psi}) \cong 2 \sum_{n=0}^{N-1} (-1)^n s_n \text{Ie}_n(\eta_0; -q) \text{ce}_n(\tilde{\psi}; -q) \frac{\text{Ke}_n(\tilde{\eta}; -q)}{\text{Ke}_n(\eta_0; -q)}, \quad (37)$$

230 which is very similar in form to equation 27 of Philip (1984).

231 This solution is back-transformed to dimensionless Cartesian coordinates using
232 the definitions

$$\tilde{\vartheta} = \tilde{H}e^{\tilde{X}}, \quad \tilde{X} = F \cosh(\tilde{\eta}) \cos(\tilde{\psi}), \quad \tilde{Z} = F \sinh(\tilde{\eta}) \sin(\tilde{\psi}). \quad (38)$$

233 The dimensionless potentials are

$$\tilde{\Psi} = \frac{\tilde{h}}{\tilde{h} - h_0} = \frac{1}{2} \ln(\tilde{\vartheta}), \quad \tilde{\Phi} = \frac{\tilde{\Phi}}{\tilde{\Phi} - h_0} = \frac{1}{2} \ln(\tilde{\vartheta}) - \tilde{X}. \quad (39)$$

234 The vertically-oriented solution (37) does not simplify in the limiting case
235 $\eta_0 = 0$, due to its orientation; the source always has a boundary condition
236 that varies with \tilde{X} .

237 4 Darcy flux along elliptical circumference

238 To determine the total flowrate, \hat{Q} [L^3/T], and the average flux, \bar{v} [L/T],
239 across the elliptical surface, the flux normal to the boundary of the ellipse is
240 found, beginning with the dimensional form of Darcy's law,

$$\mathbf{v} = -K(h) \widehat{\nabla} \Phi, \quad (40)$$

241 where \mathbf{v} is the Darcy flux [L/T]. Expressing the gradient operator in elliptical
242 coordinates (Moon and Spencer, 1961b) makes (40)

$$\mathbf{v} = \frac{-K(h)}{f \sqrt{\frac{1}{2}(\cosh(2\eta) - \cos(2\psi))}} \left(\frac{\partial \Phi}{\partial \eta} \mathbf{e}_\eta + \frac{\partial \Phi}{\partial \psi} \mathbf{e}_\psi \right), \quad (41)$$

243 where \mathbf{e} is a unit vector. For the horizontal ellipse, substituting $\Phi = h -$
244 $f \sinh(\eta) \sin(\psi)$, using the notation $\xi(\eta, \psi) = \sqrt{\frac{1}{2}(\cosh(2\eta) - \cos(2\psi))}$, and
245 taking the dot product with \mathbf{e}_η gives

$$\mathbf{v} \cdot \mathbf{e}_\eta = \frac{K(h)}{f \xi(\eta, \psi)} \left[f \cosh(\eta) \sin(\psi) - \frac{\partial h}{\partial \eta} \right], \quad (42)$$

246 for the radial (η) component of the flux. Evaluating (42) at $\eta = \eta_0$, applying
 247 the Kirchhoff transformation (2), using the Gardner exponential model, and
 248 non-dimensionalizing the flux leads to

$$V_0 = \frac{1}{F\xi(\eta_0, \psi)} \left\{ 2 \sin(\psi) - \left[\frac{\partial \vartheta}{\partial \eta} \right]_{\eta_0} \right\}, \quad (43)$$

249 where $V_0 = 2\mathbf{v}(\eta_0) \cdot \mathbf{e}_\eta / (\Theta_0 \alpha)$ and the subscript zero indicating the fluxes
 250 are evaluated on the boundary of the ellipse. The derivative in (43) can be
 251 expanded using the product rule as

$$\left[\frac{\partial \vartheta}{\partial \eta} \right]_{\eta_0} = e^{B \sin(\psi)} \left\{ \left[\frac{\partial H}{\partial \eta} \right]_{\eta_0} + A \sin(\psi) H(\eta_0) \right\}, \quad (44)$$

252 where H and its radial derivative are computed from (31).

253 *4.1 Average normal flux*

254 Multiplying by $F\xi(\eta_0, \psi)$, the integral of (43) over $0 \leq \psi \leq 2\pi$ represents
 255 the weighted average dimensionless normal flux across the boundary of the
 256 ellipse, \bar{V}_0 . This flux integral is found using the relationships from (24) and
 257 (29), along with the following integral relations

$$\begin{aligned} \int_0^{2\pi} e^{B \sin(\psi)} \sin(\psi) \text{ce}_{2n}(\psi; -q) d\psi &= 2\pi(-1)^n \sum_{r=0}^{\infty} \mathbf{A}_{2r}^{(2n)} \mathbf{I}'_{2r}(B), \\ &= 2\pi p_{2n} \mathbf{Ie}'_{2n}(\eta_0; -q), \end{aligned} \quad (45)$$

$$\begin{aligned} \int_0^{2\pi} e^{B \sin(\psi)} \sin(\psi) \text{se}_{2n+1}(\psi; -q) d\psi &= 2\pi(-1)^n \sum_{r=0}^{\infty} \mathbf{A}_{2r+1}^{(2n+1)} \mathbf{I}'_{2r+1}(B), \\ &= 2\pi p_{2n+1} \mathbf{Io}'_{2n+1}(\eta_0; -q), \end{aligned} \quad (46)$$

258 which can be found through trigonometric product identities, Bessel func-
 259 tion derivative recurrence relationships, and definitions of the first-kind radial
 260 Mathieu functions (see Appendix A). Combining these, the expression for the
 261 average normal flux at the boundary of the ellipse is

$$\begin{aligned} \bar{V}_0 &\cong -4\pi \sum_{n=0}^{N-1} [p_{2n} \mathbf{Ie}_{2n}(\eta_0; -q)]^2 \frac{\mathbf{Ke}'_{2n}(\eta_0; -q)}{\mathbf{Ke}_{2n}(\eta_0; -q)} \\ &\quad + [p_{2n+1} \mathbf{Io}_{2n+1}(\eta_0; -q)]^2 \frac{\mathbf{Ko}'_{2n+1}(\eta_0; -q)}{\mathbf{Ko}_{2n+1}(\eta_0; -q)} \\ &\quad - A \mathbf{Ie}_{2n}(\eta_0; -q) \mathbf{Ie}'_{2n}(z; -q) \\ &\quad - A p_{2n+1}^2 \mathbf{Io}_{2n+1}(\eta_0; -q) \mathbf{Io}'_{2n+1}(z; -q). \end{aligned} \quad (47)$$

262 The total flowrate is $\bar{V}_0 C$, where C is the dimensionless elliptical circum-
263 ference, given by (7) and (8).

264 When $B = 0$ and $\eta_0 = 0$, the average flux due to the strip source (47) simplifies
265 to

$$\bar{V}_0(\eta_0 = 0) \cong -4\pi \sum_{n=0}^{N-1} [\mathbf{A}_0^{(2n)}]^2 \frac{\text{Ke}'_{2n}(0; -q)}{\text{Ke}_{2n}(0; -q)}. \quad (48)$$

266 4.2 Normal flux for vertical ellipse

267 Beginning again with (41), but instead substituting $\tilde{\Phi} = \tilde{h} - f \cosh(\tilde{\eta}) \cos(\tilde{\psi})$,
268 the dimensionless flux normal to the boundary of the vertical ellipse, analogous
269 to (43), is

$$\tilde{V}_0 = \frac{1}{F\xi(\eta_0, \tilde{\psi})} \left\{ 2 \cos(\tilde{\psi}) - \left[\frac{\partial \tilde{\vartheta}}{\partial \tilde{\eta}} \right]_{\eta_0} \right\}, \quad (49)$$

270 where the derivative in (49) is

$$\left[\frac{\partial \tilde{\vartheta}}{\partial \tilde{\eta}} \right]_{\eta_0} = e^{A \cos(\tilde{\psi})} \left\{ \left[\frac{\partial \tilde{H}}{\partial \tilde{\eta}} \right]_{\eta_0} + B \cos(\tilde{\psi}) \tilde{H}(\eta_0) \right\}. \quad (50)$$

271 The average flux on the vertically-oriented ellipse is

$$\begin{aligned} \tilde{\bar{V}}_0 &\cong -4\pi \sum_{n=0}^{N-1} [s_n \text{Ie}_n(\eta_0; -q)]^2 \frac{\text{Ke}'_n(\eta_0; -q)}{\text{Ke}_n(\eta_0; -q)} \\ &\quad - B s_n^2 \text{Ie}_n(\eta_0; -q) \text{Ie}'_n(w; -q), \end{aligned} \quad (51)$$

272 with the simplification for a strip source,

$$\tilde{\bar{V}}_0(\eta_0 = 0) \cong -4\pi \sum_{n=0}^N [s_n \text{Ie}_n(\eta_0; -q)]^2 \frac{\text{Ke}'_n(0; -q)}{\text{Ke}_n(0; -q)}. \quad (52)$$

273 5 Results and Comparisons

274 Contour plots of dimensionless hydraulic (Φ) and pressure (Ψ) heads for the
275 three cases of horizontal elliptical-shaped sources are given in Figure 2. The
276 different source shapes are controlled by eccentricity; we illustrate $e = 0.9$
277 (ellipse-shaped), $e = 1$ (line segment), and $e = 0.01$ (nearly circular). The
278 difference between the circular and elliptical cases when $e = 0.01$ and $A =$
279 $R = 1.0$ is less than $1.5 \times 10^{-5} \Psi$.

280 For the horizontal strip source (Figure 2), the specified h boundary condition
 281 degenerates to the constant boundary condition used by Tranter (1951) and
 282 Kucük and Brigham (1979). For both the elliptical- and circular-shaped cavi-
 283 ties, the variation in Φ along the source boundary can be seen in the contour
 284 plots.

285 Figure 3 shows characteristic contours of $\tilde{\Phi}$ and $\tilde{\Psi}$ for the vertical elliptical
 286 and slit cases. Unlike the horizontal ellipse, the solution for the degenerate slit
 287 case (the line segment $-1 \leq \tilde{X} \leq 1$) does not simplify the boundary condition.

288 For plotting contour maps, such as those in Figures 2 and 3, a great deal of
 289 effort can be saved if the solution is computed on a “separated” elliptical mesh
 290 (Orszag, 1986). The angular Mathieu functions are computed for a vector of
 291 ψ and the radial Mathieu functions are computed for a vector of η , then
 292 they are combined in an outer-product sense. Many plotting programs can
 293 accommodate a non-Cartesian mesh, facilitating the use of this strategy.

294 The dimensionless flowrate, $Q = C\bar{V}_0$, is plotted on semi-log and log-log scales
 295 in Figure 4 for ranges of dimensionless semi-width, A , and eccentricity, e . For
 296 a given size, there is more water flowing from the circular cavity due to the
 297 greater surface area normal to flow. A horizontal ellipse (solid lines) deviates
 298 less from the circular solution (highest dash-dot line) than an equivalent ver-
 299 tical ellipse (dashed lines). This can be seen by comparing the location of the
 300 -0.25Ψ contour in Figures 2 and 3; the vertical strip is smallest, while the
 301 circular cutout is largest. For ellipses where $e \leq 0.5$ the difference between the
 302 circular and elliptical solutions is minor.

303 To facilitate the use of this solution for computing steady flowrate from an
 304 strip, circle or furrow, second-degree rational polynomials were fitted to the
 305 curves in Figure 4 using least-squares. The polynomial coefficients are given
 306 in Table 1. The polynomial regression is performed in log-log space, where the
 307 curves take the form

$$\log_{10} [Q(A)] = \frac{c_0 + c_1 \log_{10}(A) + c_2 [\log_{10}(A)]^2}{1 + c_3 \log_{10}(A)}, \quad (53)$$

308 and the error in approximation is $\leq 1\%$ over $0.01 \leq A \leq 2$ (with slightly more
 309 error for large A in the vertical ellipse case).

310 The distribution of V_0 along the boundary of the ellipse, as a function of ψ , for
 311 different values of A , is given in Figure 5. For the larger cavity, the variation
 312 of flux along the circumference of the cavity is greater, due to the fact that
 313 the boundary condition strength is a function of the vertical coordinate.

314 **6 Summary**

315 We derived a two-dimensional solution in elliptic-cylinder coordinates for Richards'
316 equation, illustrating its degeneration to the strip and circular cases. Infinite
317 series expressions for the flowrate and flux from the elliptical cutout were
318 also derived. The solutions are in terms of the eigenfunctions for elliptical
319 coordinates, which themselves can be computed from infinite series of the
320 eigenfunctions for polar coordinates.

321 Although the solutions developed herein are for free space, they represents
322 strip and furrow geometries more realistically than the widely used point
323 (Philip, 1968) or circular (Philip, 1984) solutions. To incorporate boundary
324 conditions on horizontal surfaces, approximate boundary-matching techniques
325 must be used (e.g., those used by Bakker and Nieber (2004)). The general so-
326 lution (19) is in the form of an AEM solution, but the final forms (31 or
327 37) only have two free parameters beyond the geometry (α and h_0); flexible
328 AEM elements commonly have many more. Analytic solutions usually have
329 fewer free parameters than elements in AEM do, but this is what makes them
330 simpler to use.

331 A short Matlab script which computes the required Mathieu functions and
332 evaluates the dimensionless potentials and fluxes is available from the corre-
333 sponding author upon request.

334 **7 Acknowledgments**

335 We would like to thank three anonymous reviewers for their insightful com-
336 ments that improved the paper, making it more concise. The first author was
337 supported in part by the USGS National Institutes for Water Resources Grant
338 Program (award 200AZ68G) and by the C.W. & Modene Neely fellowship
339 through the National Water Research Institute.

340 **Appendix A**

341 The modified angular Mathieu functions are defined as infinite series of trigono-
 342 metric functions (see McLachlan (1947, §2.18)),

$$\text{ce}_{2n}(\psi; -q) = (-1)^n \sum_{r=0}^{\infty} (-1)^r \mathbf{A}_{2r}^{(2n)} \cos[2r\psi], \quad (\text{A-1})$$

$$\text{ce}_{2n+1}(\psi; -q) = (-1)^n \sum_{r=0}^{\infty} (-1)^r \mathbf{B}_{2r+1}^{(2n+1)} \cos[(2r+1)\psi], \quad (\text{A-2})$$

$$\text{se}_{2n+1}(\psi; -q) = (-1)^n \sum_{r=0}^{\infty} (-1)^r \mathbf{A}_{2r+1}^{(2n+1)} \sin[(2r+1)\psi], \quad (\text{A-3})$$

$$\text{se}_{2n+2}(\psi; -q) = (-1)^n \sum_{r=0}^{\infty} (-1)^r \mathbf{B}_{2r+2}^{(2n+2)} \sin[(2r+2)\psi], \quad (\text{A-4})$$

343 where $\mathbf{A}_r^{(n)}$ and $\mathbf{B}_r^{(n)}$ are matrices of the Mathieu coefficients (eigenvectors
 344 for each eigenvalue λ_n), they are the generalized Fourier series coefficients
 345 representing the Mathieu functions; see Appendix B.

346 The radial modified Mathieu functions of the second kind are used as solu-
 347 tions to the radial Mathieu equation (15) and are only evaluated in ratios of
 348 functions of the same kind and order, allowing them to be simplified from
 349 their definitions in terms of Bessel function product series (McLachlan, 1947,
 350 §13.30),

$$\text{Ke}_{2n}(\eta; -q) = D_n \sum_{r=0}^{\infty} \mathbf{A}_{2r}^{(2n)} \text{I}_r(v_1) \text{K}_r(v_2), \quad (\text{A-5})$$

$$\text{Ke}_{2n+1}(\eta; -q) = D_n \sum_{r=0}^{\infty} \mathbf{B}_{2r+1}^{(2n+1)} [\text{I}_r(v_1) \text{K}_{r+1}(v_2) - \text{I}_{r+1}(v_1) \text{K}_r(v_2)], \quad (\text{A-6})$$

$$\text{Ko}_{2n+1}(\eta; -q) = D_n \sum_{r=0}^{\infty} \mathbf{A}_{2r+1}^{(2n+1)} [\text{I}_r(v_1) \text{K}_{r+1}(v_2) + \text{I}_{r+1}(v_1) \text{K}_r(v_2)], \quad (\text{A-7})$$

351 where D_n is a normalization constant (not all the same) that is only a function
 352 of the order, $v_1 = \sqrt{q}e^{-\eta}$, $v_2 = \sqrt{q}e^{\eta}$, and the eigenvectors $\mathbf{A}_r^{(n)}$ and $\mathbf{B}_r^{(n)}$ are
 353 the same used in the angular Mathieu function definitions. The normalization
 354 constants can be found in McLachlan (1947, p.368).

355 The integral expressions evaluate to radial Mathieu functions of the first kind,
 356 when they are given in one of their several equivalent solutions in terms of

³⁵⁷ Bessel function series (McLachlan, 1947, §8.30)

$$Ie_{2n}(\omega; -q) = (-1)^n \frac{ce_{2n}\left(\frac{\pi}{2}; q\right)}{\mathbf{A}_0^{(2n)}} \sum_{r=0}^{\infty} \mathbf{A}_{2r}^{(2n)} I_{2r} [2\sqrt{q} \sinh(\omega)] \quad (A-8)$$

$$Ie_{2n}(\omega; -q) = (-1)^n \frac{ce_{2n}(0; q)}{\mathbf{A}_0^{(2n)}} \sum_{r=0}^{\infty} (-1)^r \mathbf{A}_{2r}^{(2n)} I_{2r} [2\sqrt{q} \cosh(\omega)] \quad (A-9)$$

$$Ie_{2n+1}(\omega; -q) = (-1)^n \frac{se'_{2n+1}(0; q)}{\sqrt{q} \mathbf{B}_1^{(2n+1)}} \sum_{r=0}^{\infty} (-1)^r \mathbf{B}_{2r+1}^{(2n+1)} I_{2r+1} [2\sqrt{q} \cosh(\omega)] \quad (A-10)$$

$$Io_{2n+1}(\omega; -q) = (-1)^{n+1} \frac{ce'_{2n+1}\left(\frac{\pi}{2}; q\right)}{\sqrt{q} \mathbf{A}_1^{(2n+1)}} \sum_{r=0}^{\infty} \mathbf{A}_{2r+1}^{(2n+1)} I_{2r+1} [2\sqrt{q} \sinh(\omega)] \quad (A-11)$$

³⁵⁸ **Appendix B**

³⁵⁹ Alhargan (2000) has published C++ routines for evaluating Mathieu functions
³⁶⁰ based on the more efficient but less widely applicable continued fraction ex-
³⁶¹ pansion method. These routines utilize a different normalization scheme than
³⁶² (21) and are only valid for small Mathieu parameter ($q \leq 4n$). We use the
³⁶³ more general modern matrix formulation with available matrix solution soft-
³⁶⁴ ware (Stamnes and Spjelkavik, 1995; Chaos-Cador and Ley-Koo, 2002), which
³⁶⁵ is valid for any q .

³⁶⁶ The development of the matrices from which the eigenvalues are computed
³⁶⁷ is found in Green and Michaelson (1965), Delft Numerical Analysis Group
³⁶⁸ (1973), and Stamnes and Spjelkavik (1995). The main and off-diagonals of the
³⁶⁹ infinite matrices, from which the eigenvalues and eigenvectors are computed,
³⁷⁰ are

$$A_{ev} = \begin{bmatrix} 0 & 4 & 16 & \dots & (2r)^2 & \dots \\ \sqrt{2}q & q & q & \dots & q & \dots \end{bmatrix}, \quad (B-1)$$

$$A_{od} = \begin{bmatrix} 1-q & 9 & 25 & \dots & (2r+1)^2 & \dots \\ q & q & q & \dots & q & \dots \end{bmatrix}, \quad (B-2)$$

$$B_{od} = \begin{bmatrix} 1+q & 9 & 25 & \dots & (2r+1)^2 & \dots \\ q & q & q & \dots & q & \dots \end{bmatrix}, \quad (B-3)$$

³⁷¹
³⁷² where $\mathbf{A}_{2r}^{(2n)}$ is the matrix of eigenvectors from the symmetric tridiagonal ma-
³⁷³ trix composed of the diagonal (first row) and the off-diagonals (second row)
³⁷⁴ of A_{ev} . Similarly, A_{od} leads to $\mathbf{A}_{2r+1}^{(2n+1)}$ and B_{od} leads to $\mathbf{B}_{2r+1}^{(2n+1)}$.

376 The matrices (B-1–B-3) and the eigenvector matrices derived from them $\mathbf{A}_r^{(n)}, \mathbf{B}_r^{(n)}$
 377 are infinite matrices that must be truncated (at R terms); for the geometries
 378 illustrated here $R \leq 20$ is sufficient. Ellipses of very long aspect ratio (large
 379 $|q|$) may require larger R (more quantitative relationships for required R are
 380 given by Delft Numerical Analysis Group (1973)), but the calculations re-
 381 main trivial on a desktop computer. For the application considered here, when
 382 $A \leq 2$, the expansion of the boundary condition in angular Mathieu functions
 383 ($N = 10, R = 16$) is accurate to at least single precision.

384 Since eigenvectors only define a direction, we normalize them utilizing a con-
 385 vention attributed to Goldstein (1927) and used by McLachlan (1947). It con-
 386 sists of specifying the eigenvectors to be unit length, with special considera-
 387 tions for the zero-order even function. This convention leads to the functions
 388 having root mean squared values of $1/\sqrt{2}$ over the interval $0 \leq \psi \leq 2\pi$ (Ar-
 389 scott, 1964, §3).

390 If LAPACK (or equivalently `eig()` in Matlab) is used to compute the eigen-
 391 vector matrices, only the first eigenvector of $\mathbf{A}_{2r}^{(2n)}$ must be re-scaled. The
 392 solution for $\text{ce}_0(\psi; -q)$ is normalized so it degenerates to $\frac{1}{\sqrt{2}} \cos(0)$ as $q \rightarrow 0$.
 393 This requires the normalization be

$$2 \left[\mathbf{A}_0^{(0)} \right]^2 + \sum_{r=1}^{\infty} \left[\mathbf{A}_r^{(0)} \right]^2 = 1, \quad (\text{B-4})$$

394 where the first term is included twice.

395 References

396 F. A. Alhargan. Algorithm 804: subroutines for the computation of Mathieu
 397 functions of integer order. *ACM Transactions on Mathematical Software*,
 398 26(3):408–414, 2000.

399 F. M. Arscott. *Periodic Differential Equations*. Macmillan, 1964.

400 F. M. Arscott and A. Darai. Curvilinear co-ordinate systems in which the
 401 Helmholtz equation separates. *IMA Journal of Applied Mathematics*, 27:
 402 33–70, 1981.

403 M. Bakker and J. L. Nieber. Two-dimensional steady unsaturated flow through
 404 embedded elliptical layers. *Water Resources Research*, 40:1–12, 2004.

405 A. Ben-Menahem and S. J. Singh. *Seismic Waves and Sources*. Dover, second
 406 edition, 2000.

407 L. Chaos-Cador and E. Ley-Koo. Mathieu functions revisited: matrix eval-
 408 uation and generating functions. *Revista Mexicana de Física*, 48(1):67–75,
 409 2002.

410 L. J. Chu and J. A. Stratton. Elliptical and spheroidal wave functions. *Journal*
 411 *of Mathematics and Physics*, 20(3):259–309, 1941.

412 Delft Numerical Analysis Group. On the computation of Mathieu functions.
413 *Journal of Engineering Mathematics*, 7(1):39–61, 1973.

414 R. J. Duffin. Yukawan potential theory. *Journal of Mathematical Analysis*
415 *and Application*, 35:105–130, 1971.

416 W. R. Gardner. Some steady state solutions of unsaturated moisture flow
417 equations with application to evaporation from a water table. *Soil Science*,
418 85:244–249, 1958.

419 S. Goldstein. Mathieu functions. *Transactions of the Cambridge Philosophical*
420 *Society*, 23(11):303–336, 1927.

421 G. H. Golub and C. F. van Loan. *Matrix Computations*. Johns Hopkins, third
422 edition, 1996.

423 D. J. Green and S. Michaelson. Series solution of certain Sturm-Liouville
424 eigenvalue problems. *The Computer Journal*, 7:322–336, 1965.

425 J. C. Gutiérrez Vega, R. M. Rodriguez Dagnino, A. M. Meneses Nava, and
426 S. Chávez Cerdá. Mathieu functions, a visual approach. *American Journal*
427 *of Physics*, 71(3):233–242, 2003.

428 F. Kleinermann, N. J. Avis, and F. A. Alhargan. Analytical solution to the
429 three-dimensional electrical forward problem for an elliptical cylinder. *Phys-*
430 *iological Measurement*, 23:141–147, 2002.

431 A. Klute. A numerical method for solving the flow equation for water in
432 unsaturated materials. *Soil Science*, 73:105–116, 1952.

433 F. Kucük and W. E. Brigham. Transient flow in elliptical systems. *Society of*
434 *Petroleum Engineers Journal*, 267:401–410, 1979.

435 D. O. Lomen and A. W. Warrick. Linearized moisture flow with loss at the
436 soil surface. *Soil Science Society of America Journal*, 42:396–400, 1978.

437 R. Maertens and R. Rousseau. A new formula approach for the circumference
438 of an ellipse. *Wiskunde & Onderwijs*, 26:249–258, 2000.

439 MathWorks. *MATLAB*, 7.5 edition, 2007.

440 N. W. McLachlan. *Theory and Application of Mathieu Functions*. Oxford,
441 1947.

442 P. Moon and D. E. Spencer. *Field Theory for Engineers*. D. Van Nostrand,
443 1961a.

444 P. Moon and D. E. Spencer. *Field Theory Handbook: Including coordinate*
445 *systems differential equations and their solutions*. Springer-Verlag, 1961b.

446 P. M. Morse and H. Feshbach. *Methods of Theoretical Physics*, volume 1 and
447 2. McGraw-Hill, 1953.

448 S. A. Orszag. *Science and Computers*, volume 10 of *Advances in Mathematics*
449 *Supplementary Studies*, chapter Fast Eigenfunction Transforms. Academic
450 Press, 1986.

451 J. R. Philip. Steady infiltration from buried point sources and spherical cav-
452 ities. *Water Resources Research*, 4(5):1039–1047, 1968.

453 J. R. Philip. Steady infiltration from circular cylindrical cavities. *Soil Science*
454 *Society of America Journal*, 48:270–278, 1984.

455 J. R. Philip. Multidimensional steady infiltration to a water table. *Water*

456 *Resources Research*, 25(1):109–116, 1989.

457 A. J. Pullan. The quasilinear approximation for unsaturated porous media
458 flow. *Water Resources Research*, 26(6):1219–1234, 1990.

459 W. J. Rawls, D. L. Brakensiek, W. J. Elliot, and J. M. Laflen. Prediction
460 of furrow irrigation final infiltration rate. *Transactions of the American
461 Society of Agricultural Engineers*, 33(5):1601–1604, 1990.

462 L. A. Richards. Capillary conduction of liquid through porous mediums.
463 *Physics*, 1:318–333, 1931.

464 T. H. Skaggs, T. J. Trout, J. Šimunek, and P. J. Shouse. Comparison of
465 HYDRUS-2D simulations of drip irrigation with experimental observations.
466 *Journal of Irrigation and Drainage Engineering*, 130(4):304–310, 2004.

467 J. J. Stamnes and B. Spjelkavik. New method for computing eigenfunctions
468 (Mathieu functions) for scattering by elliptical cylinders. *Pure and Applied
469 Optics*, 4(3):251–262, 1995.

470 J. A. Stratton. *Electromagnetic Theory*. McGraw-Hill, 1941.

471 C. J. Tranter. Heat conduction in the region bounded internally by an elliptical
472 cylinder and an analogous problem in atmospheric diffusion. *Quarterly
473 Journal of Mechanics and Applied Mathematics*, 4(4):461–465, 1951.

474 A. W. Warrick. *Soil Water Dynamics*. Oxford, 2003.

475 A. W. Warrick and N. Lazarovitch. Infiltration from a strip source. *Water
476 Resources Research*, 43:W03420, 2007.

477 A. W. Warrick, N. Lazarovitch, A. Furman, and D. Zerihun. Explicit infiltration
478 for furrows. *Journal of Irrigation and Drainage Engineering*, 133(4):
479 307–313, 2007.

480 G. N. Watson. *A Treatise on the Theory of Bessel Functions*. Cambridge,
481 second edition, 1944.

482 R. A. Wooding. Steady infiltration from a shallow circular pond. *Water
483 Resources Research*, 4(6):1259–1273, 1968.

e	circular	horizontal ellipse			vertical ellipse		
		0	1	0.9	0.5	1	0.9
c_0	1.7054	1.2021	1.3975	1.6344	1.0991	1.3364	1.6199
c_1	2.3638	2.1901	2.2727	2.3411	2.1291	2.3231	2.3636
c_2	-0.2747	-0.8789	-0.5527	-0.3298	-0.7294	-0.3172	-0.2678
c_3	-0.1700	-0.4488	-0.2977	-0.1951	-0.3603	-0.1813	-0.1651

Table 1

Rational polynomial regression coefficients for $Q(A)$ in (53)

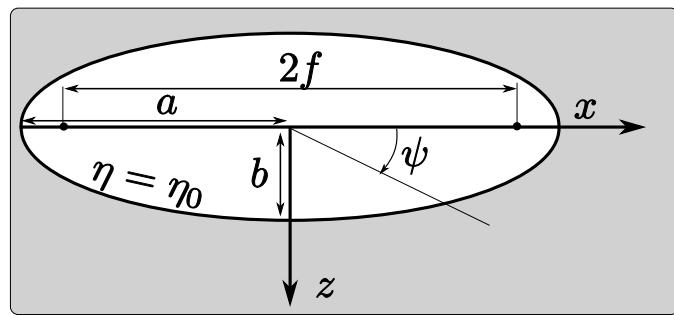


Fig. 1. Elliptical coordinates η (radial) and ψ (angular); a , b , and f are the semi-major, -minor, and -focal lengths.

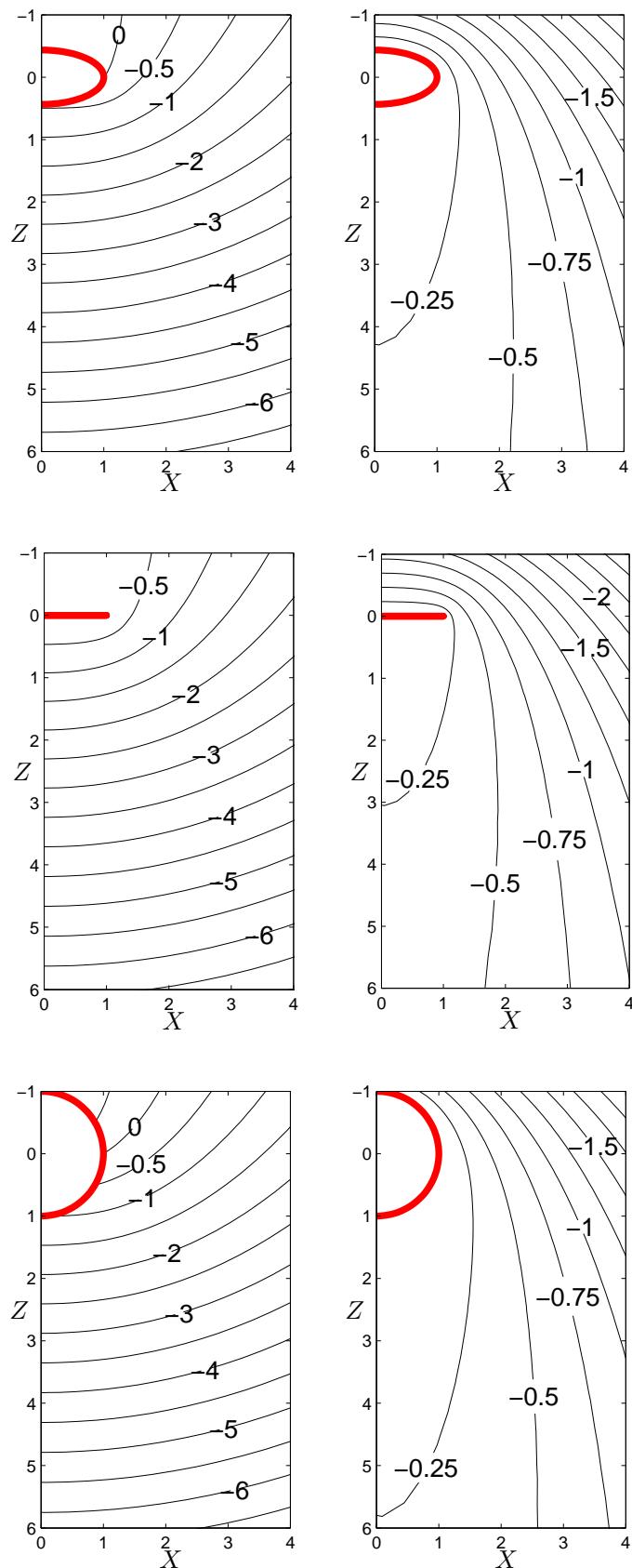


Fig. 2. Contours of dimensionless hydraulic head, Φ , (left) and pressure head, Ψ , (right) for horizontal ellipses ($A = 1.0$, $\mathcal{Q} = [0.9, 1.0, 0.01]$)

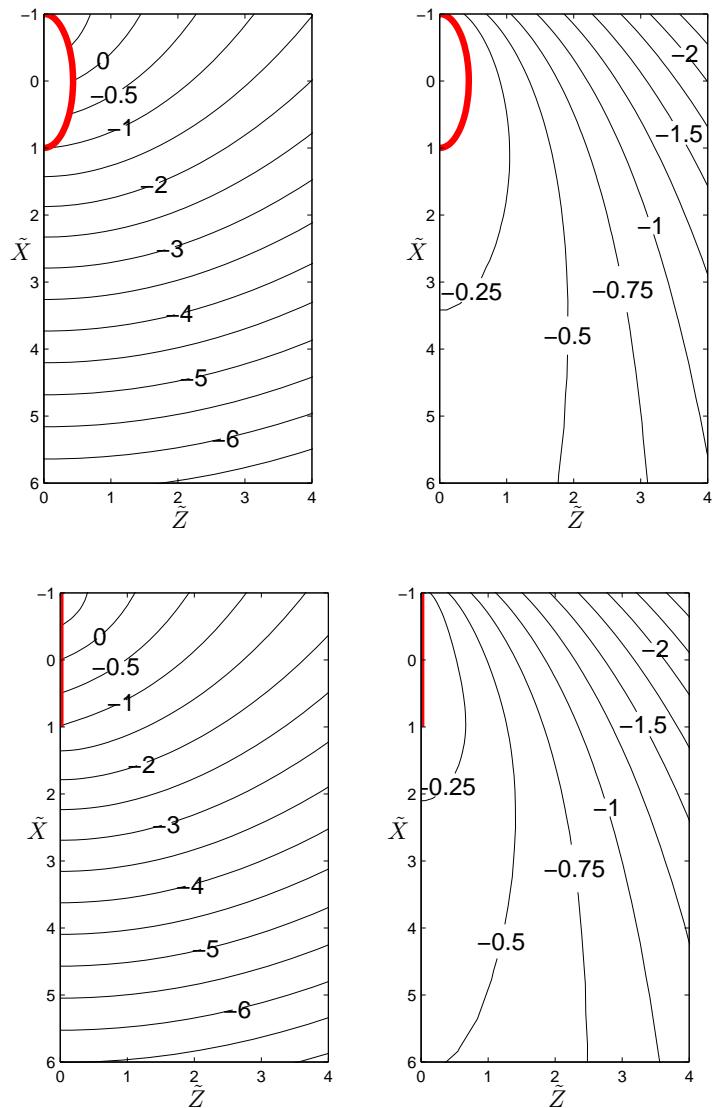


Fig. 3. Contours of dimensionless hydraulic head, $\tilde{\Phi}$, (left) and pressure head, $\tilde{\Psi}$, (right) for vertical ellipse ($A = 1.0$, $e = [0.9, 1.0]$)

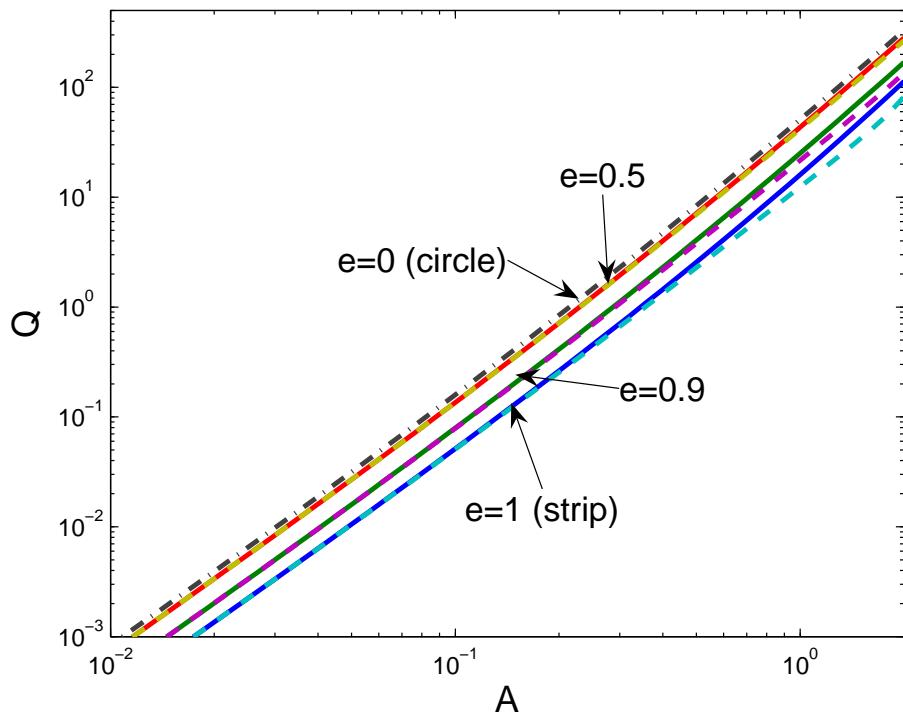


Fig. 4. Log-log plot of dimensionless flowrate, $Q = C\bar{V}_0$, as a function of size (A) and shape (e) of the horizontal (solid lines) and vertical (dashed lines) cavities. Limiting circular case is upper dash-dot line.

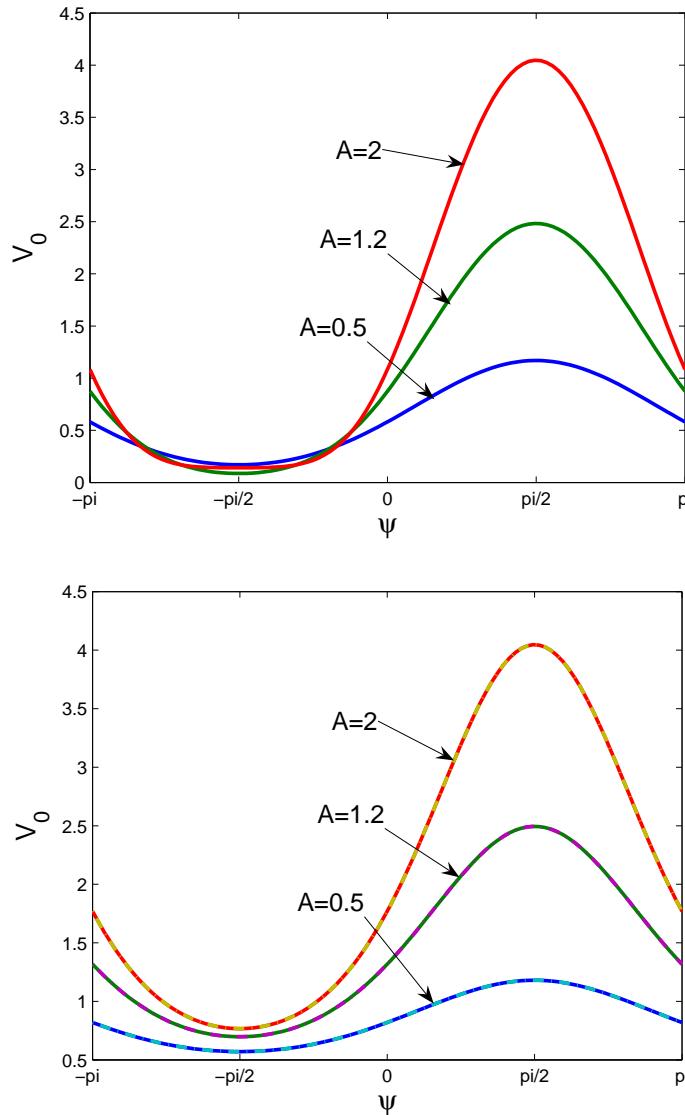


Fig. 5. Distribution of dimensionless normal flux, V_0 , with angle, ψ , for horizontal strip (left, $e = 1$) and horizontal near-circular (right, $e = 0.01$) cases (true circular solution shown as nearly coincident dash-dot line)