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Quasilinear infiltration from an elliptical
cavity
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Abstract

We develop analytic solutions to the linearized steady-state Richards equation for
head and total flowrate due to an elliptic cylinder cavity with a specified pressure
head boundary condition. They are generalizations of the circular cylinder cavity
solutions of Philip (1984). The circular and strip sources are limiting cases of the
elliptical cylinder solution, derived for both horizontally- and vertically-aligned el-
lipses. We give approximate rational polynomial expressions for total flowrate from
an elliptical cylinder over a range of sizes and shapes. The exact elliptical solution
is in terms of Mathieu functions, which themselves are generalizations of and com-
puted from trigonometric and Bessel functions. The required Mathieu functions are
computed from a matrix eigenvector problem, a modern approach that is straight-
forward to implement using available linear algebra libraries. Although less efficient
and potentially less accurate than the iterative continued fraction approach, the
matrix approach is simpler to understand and implement and is valid over a wider
parameter range.

Key words: quasilinear, Richards’ equation, analytic solution, elliptic cylinder
coordinates, Mathieu functions

1 Introduction

A solution for flow from a long elliptic cylinder cavity is given in two-dimensional
elliptical coordinates for the quasilinear (Philip, 1968) form of the steady un-
saturated flow equation (Richards, 1931) in a homogeneous porous medium.
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The solution is an extension of one by Philip (1984) for flow from a circular
cylinder cavity.

The approach taken here is to expand the linearized potential in the natural
eigenfunctions that arise in elliptical coordinates. This technique has been
utilized extensively in the physics literature (e.g., Stratton (1941, §6.12), Chu
and Stratton (1941), Morse and Feshbach (1953, p.1407-1432), Moon and
Spencer (1961a), Arscott (1964), and Kleinermann et al. (2002)), but the
solution derived here for the current problem’s boundary conditions is new.

Unsaturated porous media flow, specifically infiltration, is a very non-linear
process that is often solved numerically with finite element codes such as
HYDRUS-2D (e.g., Skaggs et al. (2004)). Analytic solutions to infiltration
problems; restricted as they may be, often deliver more insightful results due to
their simplicity. They give solutions with fewer potentially complicating auxil-
iary parameters. Pullan (1990) reviews the history of the quasilinear solution
methodology and compares numerous approaches for solving the linearized
Richards equation.

In the context of predicting furrow infiltration, Rawls et al. (1990) compared
steady infiltration solutions for 1, 2, and 3 dimensions, using the 2D point
source solution of Philip (1968) in the comparison. The solution derived here
for an elliptical shape is more realistically furrow-shaped; ellipses have the ca-
pability of simulating the geometry associated with either wide or deep cavities
and strips, rather than simple point approximations. Warrick et al. (2007) and
Warrick and Lazarovitch (2007) discuss the impacts that dimensionality and
“edge effects” have on infiltration from strips and parabolic-shaped furrows.

The elliptical solution derived here can represent the geometry of a strip or
furrow explicitly, although without surface or water table boundary effects. It
is a free-space solution, since it is valid at large distance. A dry far-field con-
dition is assumed, resulting in no-flow far away from the ellipse. Including the
effects of the land surface (potentially intersecting the ellipse) would require
imposing a no-flow boundary condition. This homogeneous type II boundary
condition would become an inhomogeneous type III boundary condition after
applying the required non-linear transformations (Wooding, 1968). A solution
for flow from an elliptical cavity that accounted for this boundary condition
would most likely be approximate in nature (e.g., a linearized AEM or gridded
numerical solution). An alternative approach would be to use the integral ex-
pression of Lomen and Warrick (1978, eq.5) (with D = 0, and no dependence
on Y or T') to include the effects of a horizontal evaporative or no-flow bound-
ary. Similarly, Philip (1989) and Warrick (2003, p.276) indicate how a water
table condition can be accounted for with a free-space solution. Using the so-
lution derived here in these integral relationships leads to integral expressions
that cannot be evaluated in closed form for general values of the coordinates.
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Bakker and Nieber (2004) applied the analytic element method to the quasi-
linear flow equation for the problem of uniform vertical flow through ellipses
of different material properties. Their approach is quite general, but to obtain
a solution for multiple elements involves performing two nested iterations. A
non-linear boundary-matching iteration is nested within an outer iteration
that accounts for the effects elements have on one another. In the analysis
presented here, no iterations are required to compute the solution, outside

of those potentially needed to compute the required Mathieu functions (also
needed for the AEM solution).

Mathieu functions are the special functions that arise as solutions to the
Helmholtz equation in elliptic-cylinder coordinates (Morse and Feshbach (1953,
p.562), Moon and Spencer (1961b), Arscott and Darai (1981), and Ben-Menahem
and Singh (2000, p.53)). We use a modern matrix eigenvector approach (Stamnes
and Spjelkavik, 1995; Chaos-Cador and Ley-Koo, 2002), allowing all the re-
quired functions and coefficients to be computed using any combination of
widely available eigensolution (e.g., Matlab (MathWorks, 2007) or LAPACK
(Golub and van Loan, 1996)) and Bessel function routines.

2 Governing equation
2.1 Quasilinear flow equation

The steady-state unsaturated porous media flow equation (Richards, 1931) is

- —~ 0K

V- (K(h)Vh) = 5 (1)
where K (h) is hydraulic conductivity [L/T], a non-linear function of pressure
head, h [L]. Flow is driven by gradients in hydraulic head, ® = h — z, the sum
of pressure and elevation heads (z positive down). Hats indicate dimensional
differential operators. The Kirchhoff transformation (Klute, 1952) is used to
linearize (1); it is

h

o(h) = / K (u) du, 2)
where u is a dummy variable and © is matric flux potential [L?/T]. Applying
(2) leads to

VO = ————. (3)

The Gardner (1958) exponential K (h) distribution is used to simplify (3)
further, by assuming the linearizing relationship K (h) = Kye*", where h < 0
for unsaturated flow, « is the sorptive number [1/L] (related to pore size) and
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Ky is K at saturation. With the Gardner distribution, (3) becomes

—~ Lo
2
O=a— 4
\Y s (4)
the steady quasilinear form of Richards’ equation. The quasilinear approxima-
tion was first extensively studied by Philip (1968); Pullan (1990) summarizes

its benefits and limitations.
2.2 Elliptical geometry

A long elliptical pipe is represented as a surface of constant radius in two-
dimensional elliptic-cylinder coordinates, where the variation along the length
of the pipe is negligible. For a horizontal ellipse, the major axis is parallel
to the land surface and the positive z-axis points down (see Figure 1). The
elliptical angular coordinate starts at the positive z-axis and increases clock-
wise, 0 <) < 27. Cartesian coordinates (z, z) [L] are defined in terms of the
dimensionless elliptical coordinates (n,1) as

x = f cosh(n) cos(v)), z = fsinh(n) sin(v), (5)

where f is the semi-focal distance [L]; the cylindrical boundary is n = 79. The
eccentricity of the ellipse is a dimensionless quantity,

e = 1_a_ (6)

equivalently given as f = ea, that ranges from 0 (circle) to 1 (line segment
joining the foci). The pair (a, e) completely specifies the geometry of the prob-
lem; a is a measure of the size of the cavity, while e is related to its shape. The
circumference of the ellipse, ¢ [L], cannot be evaluated exactly in closed form.
It is defined by an elliptic integral, but can be approximated using one of sev-
eral formulas. We use the simple YNOT expression (Maertens and Rousseau,

2000)
cr4vVay + by, (7)

where y = In(2)/In (g) and the error in the approximation is at most 0.4%.
2.8  Non-dimensionalizing

Because of the problem’s homogeneity, it can be made dimensionless with

respect to the porous medium’s sorptive number. Dimensionless lengths are

defined
A B F C X 7Z «

a f c x z
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where capital letters are dimensionless versions of lower-case variables. The
dimensionless matric flux potential is ¥ = ©/0(1n9). The boundary condition
on the ellipse is specified pressure head, k(1) = ho. For simplicity, the far-field
boundary condition is no-flow,

h(n — o0) = —oo, O[h(n — oo)] = 0; (9)

this corresponds to an assumption of dry conditions away from the cutout,
i.e., the flow field is dominated by the moisture infiltrating from the ellipse.

The linearized flow equation (4) in dimensionless form, after the exponen-
tial substitution ¢ = He?, becomes the Yukawa (Duffin, 1971) or modified
Helmholtz equation,

V?H = H; (10)

(10) is subject to the boundary conditions
H(’f](], w) :e—Fsinh(no)sin(w) — e—Bsin(dJ)’ (11>
H(n N OO) :Herinh(n) sin(v) _ 07 (12>

in elliptical coordinates. Many solutions to (10) are available in the physics
literature, though the combination of boundary condition (11) and elliptical
geometry makes the solution derived here unique.

The dimensionless pressure (¥) and hydraulic (®) heads are defined and re-
lated to 9 by
h o

= =5 = 3ln0) P = =1lm@) -2z  (13)

v

where we take hg = 0 for simplicity.

3 Solution via separation of variables

The dimensionless modified Helmholtz equation (10) in elliptical coordinates
(Moon and Spencer, 1961b, p.17) is

2 #H °H
F2[cosh(2n) — cos(2¢)] < on? + 0¢2> =M. (14)

We perform separation of variables by substituting H(n,v) = R(n)Y (¢), di-
viding by H, separating terms dependent on 7 from those dependent on ,
and setting both quantities equal to the separation constant, \; this results in

d*R

T R (2q cosh(2n) + \), (15)
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Y =-Y (2 2 A 1

T (2q cos(2¢) + A). (16)
These are the radial (15) and angular (16) modified Mathieu equations (McLach-
lan, 1947). Here, \ is an eigenvalue chosen to make the angular solution, Y (1),
periodic for the specified value of the Mathieu parameter, ¢ = —F?/4. The
solutions to equations (15) and (16) are radial and angular modified Mathieu
functions; see Alhargan (2000), Gutiérrez Vega et al. (2003), or Bakker and
Nieber (2004) for characteristic functional plots. The periodic solution to (16)
and the corresponding free-space solution to (15) is

Y (¢) = agceg(v; —q) + Y ancen(¥; —q) + busen(¥; —q), (17)
n=1

R(n) = coKeo(n; —q) + > cnKen(n; —q) + duKon(n; —q), (18)
n=1

where a,, by, ¢,, and d,, are coefficients to determine and ce,, (¢; —q) and se,, (¢;
are the even and odd, n'"-order, first-kind angular Mathieu functions of ar-
gument 1 and parameter —g. These functions degenerate to trigonometric
functions as ¢ — 0 (see Appendix A for definitions). Similarly, Ke, (n; —q)
and Ko, (n; —q) are the even and odd, n''-order, second-kind radial Math-
ieu functions of argument 7 and parameter —g. Radial Mathieu functions are
analogous to modified Bessel functions, degenerating to them as ¢ — 0.

The product of solutions to the Mathieu equations is a solution to (14),

> K n - = K n\'l
H 77 > 10, Y Z ﬁnKeen( q)) Cen _q + Z nK;)n(’th )) Sen(d’? _Q)
(19)

where /3, and ~,, are coefficients to determine and the radial Mathieu functions
are normalized by their value on the boundary of the ellipse. Cross-products
involving both odd and even functions are not considered because theses so-
lutions correspond to different eigenvalues, which may only be combined via
summation. At n = 1, (19) simplifies to

Ho(no,¥) = Boceo(v; —q) + i Brcen(¥; —q) + Tmsen(¥; —q).  (20)

3.1  Determination of coefficients

The orthogonality of the angular Mathieu functions is derived from the or-
thogonality of their sine and cosine components (McLachlan, 1947, §2.19);

—q)
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127 cen (15 q)sem (1 q) dip = 0 for any m, n, while

[ seattsapsenusa) dv = [ cen(usaleen (i) v = mhn (21)

where §,,,, is the Kronecker delta and the two Mathieu functions share the
same ¢. Multiplying (20) by each angular Mathieu function and integrating
over the domain, integral expressions for the coefficients are

L’ .—q)d 22

b= — [ Holm, w)cen(v: —q) dv, (22)
2T

== [ Hlm, 0)sea(v: —a) 4. (23)

(22) is expanded using (11), (A-1), and (A-2) resulting in

o= §<—1>TA§3"> [ e cos(ary) du (21)
B = TS B [T e cos(or 4 0] v (25)
T r—0 0

where A and B are matrices of Mathieu coefficients (see Appendix B). Using
an integral definition for the modified Bessel function of the first kind (Watson,
1944, §6.22), (24) simplifies to

Z A2r 127’ (26)

while (25) is zero for all integer r. This infinite sum of Bessel functions is
equivalent to one of several definitions of a first-kind even radial Mathieu
functions (A-8); this further simplifies the coefficient expression to

ﬁ2n - 2p2nIe2n(n0; _q)v (27)

where po, = A(()Q") /cean, (37 q). Similarly, ~, are found to be

mﬂz“;’" S (1rASY [T P eyl ds (28)

r=0
= n+1 Z A2277—L:i1 I2r+1 B) (29)
= 2p2n+1102n+1(7707 —q) (30)

where the integral involving ses, s is zero for all integer r, and po,11 =
\/§A§2n+1)/ cehyit (%7 q), the prime indicating differentiation with respect to
the argument.
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Using (27) and (30), the solution for H from a horizontal ellipse is

N-1 Kean(n; —q)
H(n > ~ 9 nleon (Mo — n(V; =) —=
(1 > 10,%) ;:,;Pz e2n(10; —q)ce2n(¥; —0) Kegn (10; —q)

Ko2n+1 (777 _q)
Kognt1(m0; —q)

+ Pan+1102n41(N0; —q)s€2n41(V; —q) (31)

The approximation comes from truncating the infinite sum at 2N — 1 terms.
Eigenfunction expansions such as (31) share the favorable convergence prop-
erties of Fourier series (Morse and Feshbach (1953, p.743), Arscott (1964,
§3.9.1)). Appendix B has some heuristic discussion on the level of approxima-
tion needed for most problems.

3.2 Limiting cases

3.2.1 Clircular

As the ellipse becomes a circle, [A, B] — Ry, the dimensionless circular ra-
dius. In the limit ¢ — 0, the cigenvector matrices, AS™ and ALY become
diagonal (see Appendix B); each angular Mathieu function is composed of a
single harmonic (n = r). Therefore, the sum of coefficients in r reduce to a

single term, Iy, (B).

The circular cylinder solution of Philip (1984) is derived for the coordinate
system in Figure 1, resulting in a circular solution that corresponds to (31) as
e — 0,

H(R > Ro, ) %%IO(RO) L9 Z_l (-1)%%1%(30) cos(2ne)—

23 (1t B (R sn2m < )] (32

where K,, is the second-kind modified Bessel function, R = ra/2 is the di-
mensionless radius, and ¢ is the angle (following the convention in Figure 1).
The integrals involving odd cosine orders and even sine orders are zero for all
integer n.

Numerically, (31) is ill-behaved as e — 0. The Mathieu functions do asymp-
totically become Bessel functions, but for e < 0.01 the solution is better
approximated with (32).
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3.2.2  Strip

In the other limiting case, as the elliptical cylinder degenerates to a strip
(e =1 and B = 0), the 1.(B) coefficients all become zero except Iy(0) = 1,
leaving

N-—1
H = LAY ey (s —q) e2nl —4)
(n>0,1) 22_:0( 1) A% ceq, (1; q)Ke%(o;_q)’ (33)

which is the same form given by Tranter (1951) and used by Kuctk and
Brigham (1979) for the case of constant specified potential along an ellipse
(not restricted to 1y = 0 in their cases). When B = 0, the boundary condi-
tion on the ellipse (11) becomes constant; there is no z-variation across the
strip. Numerically, (33) is well behaved; the radial Mathieu functions can be
evaluated at 7 = 0 without problems.

3.8  Modification for vertically oriented ellipse

Since the modified Helmholtz equation (10) is symmetric with respect to x
and z, the boundary conditions and back-transformation functions can be
changed, to give the solution for a vertically-oriented ellipse. The domain is
rotated clockwise by 7/2 compared with Figure 1. The boundary condition is

79(7707 1;) = 17 FIO(”07¢) = e_ACOS(J}% (34)

where a tilde indicates the variable is related to the vertically-oriented ellipse
(X points down); the far-field boundary condition remains unchanged. (34)
leads to modified expressions for the coefficients

an _ (—73)" 2(_1)TA§371) /02” p—Acos(P) COS(QME) d@E
(1) S (1) AR, (A), (35)
r=0

= 2sgnlez,(n0; —q),
3 )" & n 2 —Acos(1) 7 7
Bant1 = ( W) Z( 1)’"B£+J{1)/0 e~ A0s(¥) ¢og {(2r+ l)w} dep

r=0

= 2(—1)"*! Z 1) B V44 (A), (36)

— —232n+1182n+1 (770a _Q)
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where now the integrals involving se,, are zero for integer r, o, = A(()zn) /cean (0;q),
and Sop41 = \/§B§2"+1)/se’2n+1(0; q). The solution for H, analogous to (31), is

r7(5 T\ A = _1\n . . Ken(ﬁ? _q>
H(i) > 10,0) =2 nz::o( 1)"splen (no; —q)cen (¢ q>7Ken(no; — (37)

which is very similar in form to equation 27 of Philip (1984).

This solution is back-transformed to dimensionless Cartesian coordinates using
the definitions

U= He", X = F cosh(#) cos(1)), Z = F sinh(7) sin(¢)). (38)
The dimensionless potentials are

. h 1. - - P 1. -~ -
U= = —In(9), P = = —In(9) — X. 39
P QH() Fy— QH() (39)

The vertically-oriented solution (37) does not simplify in the limiting case
no = 0, due to its orientation; the source always has a boundary condition
that varies with X.

4 Darcy flux along elliptical circumference

To determine the total flowrate, Q [L3/T], and the average flux, v [L/T],
across the elliptical surface, the flux normal to the boundary of the ellipse is
found, beginning with the dimensional form of Darcy’s law,

v=—K(h)Vo, (40)

where v is the Darcy flux [L/T]. Expressing the gradient operator in elliptical
coordinates (Moon and Spencer, 1961b) makes (40)

vV = —K(h) 0_(I>e a_q;e
f\/%(cosh(Qn) — cos(2¢)) (877 n b w) , (41)

where e is a unit vector. For the horizontal ellipse, substituting ® = h —

fsinh(n) sin(¢), using the notation £(n,v) = \/%(cosh(Qn) — cos(2¢)), and
taking the dot product with e, gives

v-e,= ﬂ lf cosh(n) sin(1))

oh
FEln ) ] ’ 42)

Nz

10
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for the radial (n) component of the flux. Evaluating (42) at n = 79, applying
the Kirchhoff transformation (2), using the Gardner exponential model, and
non-dimensionalizing the flux leads to

1 ) oY
Y= P ) {Qsm(w | } ’ )

where Vo = 2v(n) - e,/(©pa) and the subscript zero indicating the fluxes
are evaluated on the boundary of the ellipse. The derivative in (43) can be
expanded using the product rule as

lg_:ﬂ 70 = { laa—l;]] 70 ' ASin(w)H(nO)} | .

where H and its radial derivative are computed from (31).

4.1 Average normal flux

Multiplying by F&(no, ), the integral of (43) over 0 < ¢ < 27 represents
the weighted average dimensionless normal flux across the boundary of the
ellipse, V. This flux integral is found using the relationships from (24) and
(29), along with the following integral relations

2w .
/ P sin () ey, (15 —q) dip = 27 (— Z AP (
0

= 27Tp2n192n(7707 _q)v (45)
2 . n
/0 eBsin(¥) sin(v)segni1(¢; —q) dyp = 2m(— Z Az?uil I/2r+1 B),
- 27Tp2n+1102n+1(n07 - )7 (46>

which can be found through trigonometric product identities, Bessel func-
tion derivative recurrence relationships, and definitions of the first-kind radial
Mathieu functions (see Appendix A). Combining these, the expression for the
average normal flux at the boundary of the ellipse is

N-1 /
- Keb,, (10; —q)
Vo = —4r nlean (no; —q)]* —2——=
0 nzz% [Pznlean(10; =) Kea, (10; —q)

e Kob, 1 (n0; —¢) (47)

+ [p2n+1102, ;—
[ 2n+1102 +1(770 K02n+1(770; —q)

— Aleg, (n0; —q)ley, (23 —q)
_Apgn+1102n+l (7707 _q)IO;n—l—l (Z’ _Q) .

11
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The total flowrate is Q = VC, where C is the dimensionless elliptical circum-
ference, given by (7) and (8).

When B = 0 and 19 = 0, the average flux due to the strip source (47) simplifies
to

. = Keb, (05 —q)
Vol = 0) = —4x S~ [A@0]* 22U 7). 48
ol ) nz:‘; [ ’ } Kes, (0; —q) 48)

4.2 Normal flux for vertical ellipse

Beginning again with (41), but instead substituting ® = h — f cosh(#) cos(1)),
the dimensionless flux normal to the boundary of the vertical ellipse, analogous

to (43), is
- 1 - [o0
Vo= ——=-12 — == ; 49
= e { cost) - | %LO} (49)
where the derivative in (49) is
) _ st ) [OH ]
laﬁ]m =e { [ o LO + Bcos(w)H(no)} ) (50)

The average flux on the vertically-oriented ellipse is

T — Key, (mo; —q)
Vo2 —4r sple, (ng; — R AL
" nzz‘f)[ (m0; =)} Ke,(n0; —q)
—Bs2le,(no; —q)1e, (w; —q), (51)

with the simplification for a strip source,

Vol =0) = =i X sles(mi o) 2G5 (62)

5 Results and Comparisons

Contour plots of dimensionless hydraulic (®) and pressure (¥) heads for the
three cases of horizontal elliptical-shaped sources are given in Figure 2. The
different source shapes are controlled by eccentricity; we illustrate e = 0.9
(ellipse-shaped), e = 1 (line segment), and e = 0.01 (nearly circular). The
difference between the circular and elliptical cases when e = 0.01 and A =
R =1.01is less than 1.5 x 107°W .

12
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For the horizontal strip source (Figure 2), the specified h boundary condition
degenerates to the constant boundary condition used by Tranter (1951) and
Kuctk and Brigham (1979). For both the elliptical- and circular-shaped cavi-
ties, the variation in ® along the source boundary can be seen in the contour
plots.

Figure 3 shows characteristic contours of ® and W for the vertical elliptical
and slit cases. Unlike the horizontal ellipse, the solution for the degenerate slit
case (the line segment —1 < X < 1) does not simplify the boundary condition.

For plotting contour maps, such as those in Figures 2 and 3, a great deal of
effort can be saved if the solution is computed on a “separated” elliptical mesh
(Orszag, 1986). The angular Mathieu functions are computed for a vector of
1 and the radial Mathieu functions are computed for a vector of 7, then
they are combined in an outer-product sense. Many plotting programs can
accommodate a non-Cartesian mesh, facilitating the use of this strategy.

The dimensionless flowrate, Q = CVy, is plotted on semi-log and log-log scales
in Figure 4 for ranges of dimensionless semi-width, A, and eccentricity, e. For
a given size, there is more water flowing from the circular cavity due to the
greater surface area normal to flow. A horizontal ellipse (solid lines) deviates
less from the circular solution (highest dash-dot line) than an equivalent ver-
tical ellipse (dashed lines). This can be seen by comparing the location of the
—0.25 W contour in Figures 2 and 3; the vertical strip is smallest, while the
circular cutout is largest. For ellipses where e < 0.5 the difference between the
circular and elliptical solutions is minor.

To facilitate the use of this solution for computing steady flowrate from an
strip, circle or furrow, second-degree rational polynomials were fitted to the
curves in Figure 4 using least-squares. The polynomial coefficients are given
in Table 1. The polynomial regression is performed in log-log space, where the
curves take the form

_coterlogg(A) + e [IOglo(A)]2
logy [Q(A)] = 1+ 3 logy(A)

, (53)

and the error in approximation is < 1% over 0.01 < A < 2 (with slightly more
error for large A in the vertical ellipse case).

The distribution of Vj along the boundary of the ellipse, as a function of v, for
different values of A, is given in Figure 5. For the larger cavity, the variation
of flux along the circumference of the cavity is greater, due to the fact that
the boundary condition strength is a function of the vertical coordinate.

13
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su 6 Summary

s We derived a two-dimensional solution in elliptic-cylinder coordinates for Richards’
a6 equation, illustrating its degeneration to the strip and circular cases. Infinite

a7 series expressions for the flowrate and flux from the elliptical cutout were

a8 also derived. The solutions are in terms of the eigenfunctions for elliptical

si9 coordinates, which themselves can be computed from infinite series of the

a0 eigenfunctions for polar coordinates.

31 Although the solutions developed herein are for free space, they represents
s strip and furrow geometries more realistically than the widely used point
23 (Philip, 1968) or circular (Philip, 1984) solutions. To incorporate boundary
;24 conditions on horizontal surfaces, approximate boundary-matching techniques
»s must be used (e.g., those used by Bakker and Nieber (2004)). The general so-
»s lution (19) is in the form of an AEM solution, but the final forms (31 or
27 37) only have two free parameters beyond the geometry (a and hg); flexible
28 AEM elements commonly have many more. Analytic solutions usually have
»9  fewer free parameters than elements in AEM do, but this is what makes them
;0 simpler to use.

s A short Matlab script which computes the required Mathieu functions and
s evaluates the dimensionless potentials and fluxes is available from the corre-
;3 sponding author upon request.
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Appendix A

The modified angular Mathieu functions are defined as infinite series of trigono-
metric functions (see McLachlan (1947, §2.18)),

cenn(i =) = (~1)" S_(~1)" AL cosf2ru], (A1)
cenan (¥ 0) = (1" S (1B cosl2r 4 0], (A2
oV =) = (-1 (17 AGL snlr o). (A
seonsalU =) = (-1 S (1Y BEY snl2r 420, (A

where A and B{™ are matrices of the Mathieu coefficients (eigenvectors
for each eigenvalue \,), they are the generalized Fourier series coefficients
representing the Mathieu functions; see Appendix B.

The radial modified Mathieu functions of the second kind are used as solu-
tions to the radial Mathieu equation (15) and are only evaluated in ratios of
functions of the same kind and order, allowing them to be simplified from

their definitions in terms of Bessel function product series (McLachlan, 1947,
§13.30),

Kegn —q D ZA ( 2), (A-5)
Keon1(n =D, Z B (L (00) K1 (v2) — Lo (01K, ()], (A-6)
Koo 41(7 =D, ZAﬁ’f{l (V1) Kiy1(v2) + Lya (0)Ke(v2)], (A-T)

where D,, is a normalization constant (not all the same) that is only a function
of the order, v; = /ge™", vy = ,/qe", and the eigenvectors A™ and B{™ are
the same used in the angular Mathieu function definitions. The normalization
constants can be found in McLachlan (1947, p.368).

The integral expressions evaluate to radial Mathieu functions of the first kind,
when they are given in one of their several equivalent solutions in terms of

15



»7 Bessel function series (McLachlan, 1947, §8.30)
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Cez"( ’ )ZA(2" )1, [2y/sinh(w) (A-8)

7. i(_l)TAzin Iy [24/q cosh(w)] (A-9)

n Se/2n+1 (07 Q)

~ Moyin 24/q cosh(w)]
/gBZ D

(A-10)

I2r+1 2\/58111}1( )] (A-ll)

Alhargan (2000) has published C++ routines for evaluating Mathieu functions
based on the more efficient but less widely applicable continued fraction ex-
pansion method. These routines utilize a different normalization scheme than
(21) and are only valid for small Mathieu parameter (¢ < 4n). We use the
more general modern matrix formulation with available matrix solution soft-
ware (Stamnes and Spjelkavik, 1995; Chaos-Cador and Ley-Koo, 2002), which
is valid for any gq.

The development of the matrices from which the eigenvalues are computed
is found in Green and Michaelson (1965), Delft Numerical Analysis Group
(1973), and Stamnes and Spjelkavik (1995). The main and off-diagonals of the
infinite matrices, from which the eigenvalues and eigenvectors are computed,

(B-1)

, (B-2)

, (B-3)

is the matrix of eigenvectors from the symmetric tridiagonal ma-
trix composed of the diagonal (first row) and the off-diagonals (second row)

of Aev. Similarly, Aod leads to A5 and Bod leads to BS™ Y.
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7 The matrices (B-1-B-3) and the eigenvector matrices derived from them A B
w7 are infinite matrices that must be truncated (at R terms); for the geometries

ws illustrated here R < 20 is sufficient. Ellipses of very long aspect ratio (large

wo |q|) may require larger R (more quantitative relationships for required R are

s given by Delft Numerical Analysis Group (1973)), but the calculations re-

;1 main trivial on a desktop computer. For the application considered here, when

2 A < 2, the expansion of the boundary condition in angular Mathieu functions

33 (N =10, R = 16) is accurate to at least single precision.

;4 Since eigenvectors only define a direction, we normalize them utilizing a con-
s vention attributed to Goldstein (1927) and used by McLachlan (1947). It con-
w6 sists of specifying the eigenvectors to be unit length, with special considera-
;7 tions for the zero-order even function. This convention leads to the functions
38 having root mean squared values of 1/ V2 over the interval 0 < ¢ < 27 (Ar-
380  Scott, 1964, §3)

30 If LAPACK (or equivalently eig() in Matlab) is used to compute the eigen-
s vector matrices, only the first eigenvector of Ag,") must be re-scaled. The
32 solution for ceq(1); —q) is normalized so it degenerates to % cos(0) as ¢ — 0.
33 This requires the normalization be

2[AV) + Y [A0] = 1, (B4)
r=1

304 where the first term is included twice.
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vertical ellipse

circular horizontal ellipse
e 0 1 0.9 0.5 1 0.9 0.5
co | 1.7054 | 1.2021 1.3975 1.6344 | 1.0991 1.3364 1.6199
c1 | 23638 | 2.1901 2.2727 23411 | 2.1291 23231  2.3636
co | -0.2747 | -0.8789 -0.5527 -0.3298 | -0.7294 -0.3172 -0.2678
cs | -0.1700 | -0.4488 -0.2977 -0.1951 | -0.3603 -0.1813 -0.1651
Table 1

Rational polynomial regression coefficients for Q(A) in (53)
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Fig. 1. Elliptical coordinates n (radial) and ¢ (angular); a, b, and f are the semi—
major, -minor, and -focal lengths.
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Fig. 2. Contours of dimensionless hydraulic head, ®, (left) and pressure head, ¥,
(right) for horizontal ellipses (A = 1.0, 2 [0.9,1.0,0.01])
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Fig. 3. Contours of dimensionless hydraulic head, ®, (left) and pressure head, v,
(right) for vertical ellipse (A = 1.0, e = [0.9,1.0])
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Fig. 4. Log-log plot of dimensionless flowrate, Q = CV, as a function of size (A)
and shape (e) of the horizontal (solid lines) and vertical (dashed lines) cavities.
Limiting circular case is upper dash-dot line.
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Fig. 5. Distribution of dimensionless normal flux, Vg, with angle, v, for horizontal
strip (left, e = 1) and horizontal near-circular (right, e = 0.01) cases (true circular
solution shown as nearly coincident dash-dot line)
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